
More “Back-to-basics”
In December 2004 I made the decision 
that this column should make a return 
visit to topics in quantitative analysis that 
had been covered (or sometimes just 
mentioned) in previous columns. Within 
seconds of that decision I realised that 
we would need to treat qualitative analy-
sis to the same revision. The quantitative 
aspects turned out to be a three year 
marathon∗ journey but we have at last 
arrived at the start of what was conceived 
as “Part 2”.

I have been working on problems in 
qualitative analysis for 40 years! That’s 
before chemometrics as a topic began 
and I regard them as being much more 
demanding than quantitative analysis. 
There are several reasons for this, some 
more obvious than others:

qualitative analysis is not a single 
problem,
some humans are very good at look-
ing at spectra and making qualitative 
decisions,
solutions require more statistics than 
are needed for quantitative analysis.

Problems in qualitative 
analysis
From the classical point of view, qualita-
tive analysis is divided into supervised or 
unsupervised methods but the number 
of different objects is also very important. 

■

■

■

The question “Is this sample compound 
A or compound B?” is different to the 
question “Is this sample compound A, or 
B, or C, or ..., or Z” and very different to 
the request “Identify this sample”.

Human skills
Spectroscopists have been looking at 
spectra, and giving answers to all three 
types of questions listed above, for a 
very long time. I do not know of any 
spectroscopists who would claim to 
be able to look at a spectrum and esti-
mate the percentage of ingredient x, but 
computers can, so qualitative analysis 
must be a less difficult problem!

A recent query from one of our read-
ers (always welcome!) resulted in an e-
mail discussion with some of the world 
experts on IR qualitative analysis. Their 
view is that qualitative analysis is too 
difficult to trust to a computer! As Peter 
Griffiths points out in his recent second 
edition of Fourier Transform Infrared 
Spectrometry, “... a library search cannot 
identify an unknown unless the unknown 
is present in the library”.1

Statistics in qualitative analysis
In quantitative analysis if we have the 
RMSEP then we have all the statistics 
we need (some others may be useful). 
In qualitative analysis we need to know 
standard errors but we also need to 

know about distance measures, decision 
boundaries, prior probabilities, misclassi-
fication costs, ... . Luckily for me I have 
had Tom Fearn to guide and advise me 
for the last 25 years and most of what 
follows is Tom’s work, much of it previ-
ously published in the “Chemometric 
Space” in NIR news2 or in our frequently 
referenced book.3
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Supervised and 
 unsupervised classification
Statistical classification has a number of 
interesting applications in spectroscopy. 
For NIR data in particular, it has been 
used in a number of scientific publica-
tions and practical applications.

There is an important distinction 
between two different types of classifica-
tion: so-called unsupervised and super-
vised classification. The former of these 
usually goes under the name of cluster 
analysis and relates to situations with little 
or no prior information about group struc-
tures in the data. The goal of the tech-
niques in this class of methods is to find 
or identify tendencies of samples to clus-
ter in sub-groups without the use of any 
prior information. This is a type of analy-
sis that is often used at an early stage 
of an investigation, to explore, for exam-
ple, whether there may be samples from 
different sub-populations in the dataset, 
for instance different varieties of a grain 
or samples of chemicals from different 
suppliers. In this sense, cluster analysis 
has similarities with the problem of iden-
tifying outliers in a quantitative data set.
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*Sorry! Races and currently marathons are uppermost in my mind because I have a place 
in the London Marathon to run for the homelessness charity “Shelter” on 13th April. 
Would you like to sponsor me? You can at: www.justgiving.com/tonydavies1



Cluster analysis can be performed 
using very simple visual techniques 
such as PCA, but it can be done more 
formally, for instance by one of the hier-
archical methods. These are techniques 
that use distances between objects to 
identify samples that are close to each 
other. The hierarchical methods lead to 
so-called dendrograms, which are visual 
aids for deciding when to stop a cluster-
ing process.

The other type of classification, super-
vised classification, is also known under 
the name of discriminant analysis. This 
is a class of methods primarily used to 
build classification rules for a number 
of pre-specified subgroups. These rules 
are later used for allocating new and 
unknown samples to the most probable 
sub-group. Another important applica-
tion of discriminant analysis is to help in 
interpreting differences between groups. 
Discriminant analysis can be looked upon 
as a kind of qualitative calibration, where 
the quantity to be calibrated for is not 
a continuous measurement value, but a 
categorical group variable. Discriminant 
analysis can be done in many different 
ways, some of these will be described in 
following columns. Some of the methods 
are quite model orientated, while others 
are very flexible and can be used regard-
less of structures of the sub-groups.

Some of the material in earlier columns 
on quantitative analysis is also relevant to 
classification. Topics and techniques such 
as collinearity, data compression, scatter 
correction, validation, sample selection, 
outliers and spectral correction are all 
as important for this area as they are for 
quantitative calibration.

Distance measurements 
used in classification
It seems a good idea before we begin 
a discussion of techniques to describe 
some of the ways of measuring distance 
that we will be using. The message is 
that there are some very simple though 
perhaps non-obvious relationships 
between some of these measures.

Spectra as vectors
A spectrum x = (x1, x2, ..., xp) measured 
at p wavelengths can be thought of as 
a point in p-dimensional space by taking 

each of the p measurements as the 
coordinate in one of the dimensions. We 
may equally well think of the spectra as 
vectors, by joining the point representa-
tion of the spectrum to the origin with a 
line. As usual, the trick to understanding 
the maths is to consider the case p = 3, 
for which it is easy to draw the picture. 
Figure 1 shows two vectors in a three-
dimensional space.

Euclidean distance
Euclidean distance, D, is the “natural 
measurement” of distance between two 
objects.

Geometrically, D is the length of the 
line joining the ends of the two vectors 
in the figure. For the multi-dimensional 
case it is defined as:

D2 = (x1 − z1)
2 + (x2 − z2)

2 + ... + (xp − zp)
2

 = Σ(xi − zi)
2

which expands to:

D2 = Σ xi
2 + Σ zi

2 – 2 Σ xi zi

Angles between vectors
Geometrically, we can just measure 
the angle θ between the two vectors in 
Figure 1. If the vectors represent spectra, 
then we can call this the angle between 
the spectra. It is clear from the picture 
that the more similar the two spectra, the 
closer together will be the two points and 
the smaller will be the angle between 
the corresponding vectors. Of course it 
is usually preferable to use a formula to 
compute the angle between x = (x1, x2, 
..., xp) and z = (z1, z2, ..., zp) directly from 
the measurements. The relevant formula 

is the one that relates the so-called dot 
product of the two vectors

x.z = x1 z1 + x2 z2 + ... + xp zp = Σ xi zi

to their lengths |x| and |z| and the angle 
θ between them. The formula is

 x.z = |x| |z| cos θ (1)

where

|x|2 = x1
2 + x2

2 + ... + xp
2 = Σ xi

2

and

|z|2 = z1
2 + z2

2 + ... + zp
2 = Σ zi

2

Thus, to compute the angle we 
compute the dot product and the two 
lengths, and then use Equation (1) to 
find cos θ, and hence θ.

Standardising the length
If we are going to be computing a lot of 
these angles, it makes sense to stand-
ardise all the spectra so that each has 
length 1. This is achieved for x by divid-
ing each xi by |x|.

In the picture, the vectors keep their 
direction but are rescaled in length to lie 
on a sphere of radius 1. Then |x| = |z| = 1 
and Equation (1) reduces to

 x.z = cos θ (2)

Now the angle and the dot product are 
equivalent measures of distance in the 
sense that each can be calculated simply 
from the other. Note though that the 
maximum dot product, 1, corresponds 
to the minimum angle, 0, whilst a dot 
product of 0 corresponds to an angle of 
π/2 = 90°. This equivalence means that 
we could equally well define a region 
of similarity around x as all spectra that 
have a dot product with x exceeding d, or 
as all spectra that make an angle of less 
than cos–1 d with x.

Relation with Euclidean distance
Using standardised spectra, there is a 
fairly simple relation between these two 
measures and the Euclidean distance D. 

If D2 = Σ xi
2 + Σ zi

2 – 2 Σ xi zi

then when the vectors are standardised 
and the first two terms are each 1, we 
have

D2 = 2(1 − x.z) = 2(1 − cos θ)

θ

Figure 1. Two spectra as vectors x and z in 
a three-dimensional space.

16 SPECTROSCOPYEUROPE

TONY DAVIES COLUMNTONY DAVIES COLUMN

www.spectroscopyeurope.com

 VOL. 20 NO. 2 (2008)



lent, it just introduces a scale factor into 
the equation relating them. Thus, in this 
sense, using the correlation coefficient 
(or its square) as a distance measure is 
essentially the same as pretreating with 
SNV and using either the angle or the 
dot product between the spectra as the 
distance measure.
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Thus, for standardised spectra, the dot 
product, angle and Euclidean distance 
are all three equivalent measures of 
distance. A region of similarity defined by 
any of the three would be all spectra that 
lie within a circle around x on the surface 
of the sphere.

The dot product is easily the quickest 
to calculate, so would be the preferred 
measure from a computational point of 
view. For non-standardised spectra the 
three measures would, of course, all be 
different.

Relation with correlation
Another measure sometimes used to 
compare spectra is the correlation coef-
ficient between them. To relate this to 
the distance measures above we need 
to centre as well as scale the spec-
tra. Suppose we transform from x to x*, 
where the ith element xi

* of x* is given 
by

 xi
* = (xi − mx) / lx (3)

where
 mx = Σ xi / p

is the mean of the elements in x and

lx
2 = Σ(xi − mx)

2

is the squared length of x after it has 
been centred. Then the dot product 
between x* and the similarly centred and 
scaled z* is

x z* *.
( )( )

( ) ( )
=

− −

− −

∑
∑∑

x m z m

x m z m

i x i z

i x i z
2 2

which, by definition, is the correlation 
coefficient between x and z. Thus we 
have yet another equivalence: the corre-
lation is the same as the dot product if 
we centre and scale the spectra before 
computing the latter.

The transformation in Equation (3) 
looks rather similar to the well-known 
SNV standardisation.4,5 The only differ-
ence is that SNV would normally use sx 
as a divisor rather than lx , where

sx
2 = lx

2 / (p − 1)

The only difference this would make 
is that the dot product now becomes 
p − 1 times the correlation. This does not 
change the fact that the two are equiva-
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