
Over recent months we have been in 
discussion with Klaas Faber about an arti-
cle for the column looking into the issues 
around over-fitting multivariate calibration 
models. I hope their ideas expressed in 
this article will lead to some more discus-
sion on this subject!—A.N.D.

Background
Multivariate calibration models are impor-
tant in many fields. They apply in the 
chemical, petrochemical, pharmaceuti-
cal, cosmetic, colouring, plastics, paper, 
rubber and foodstuffs industries, as well 
as in forensic, environmental, medical, 
sensory and marketing research. Various 
methods have been developed for build-
ing multivariate calibration models of 
which partial least squares (PLS) regres-
sion is currently the de facto standard in 
applied work. The following discussions 
are equally relevant for other multivariate 
calibration methods.

The first step towards constructing a 
PLS model is to remove undesirable 
features from the X-data by pre-treatment 
techniques such as filtering1 or differen-
tiation.2 The next critical step serves to 
select the optimum model rank, which 
is the number of PLS components that 
constitute the multivariate model. The 
state of the art concerning commer-
cially available software has been criti-
cised by A.N. Davies in this publication:3 

“Back in 1998 more advanced chemo-
metric tools were being made availa-
ble as standard in spectrometer control 
packages. This had, however, raised 
fears that the inherent dangers of over-
fitting data were not being sufficiently 
addressed in order to help inexperienced 
spectroscopists handle the additional 

computing power that was becoming 
available. I must admit that the work 
of my co-column Editor in pushing for 

“Good Chemometrics Practice” has hope-
fully raised awareness in the community 
of the potential pitfalls in using these 
packages without due consideration, 
but I personally have not been aware 
of clear unambiguous automated warn-
ings starting to appear when data was 
being over-fitted.” (Our italics.)

Over-fitting causes harm because one 
not only incorporates predictive features 
of the data in the model, but also noise. 
The implication is degraded model 
performance in the prediction stage.

Many methods have been developed to 
tackle over-fitting, of which model valida-
tion is the most frequently applied one in 
practice. In the context of multivariate cali-
bration, validation amounts to assessing 
the ability of a model to predict the prop-
erty of interest for future samples. This can 
be performed in two essentially different 
modes, namely externally and internally. 

“External” refers to the requirement that 
the validation samples be independent 
of the samples used for constructing the 
model, i.e. the calibration set; otherwise 
one does not properly assess the ability to 
predict for truly unknown future samples. 
The predictive ability is estimated by 
applying the model to these (independ-
ent) validation samples and averaging the 
squared prediction errors, i.e. the differ-
ences between model prediction and 
the associated “known” reference value. 
The square root of this average squared 
error is known as the root mean squared 
error of prediction (RMSEP). In equation 
form, for increasing number of compo-
nents (A),
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where Nval is the number of validation 
samples and ŶA,n and Yref,n denote the 
model prediction with A components 
and “known” reference value for sample 
n (n = 1, …, Nval), respectively. Ideally, 
the results of this calculation lead to a 
clear (i.e. not too broad and shallow) 
minimum RMSEP for the optimum 
model rank.

Internal validation differs in the sense 
that the validation samples are taken 
from the calibration set itself, i.e. the vali-
dation samples are not truly independ-
ent. To execute an internal validation, one 
has the choice between (1) cross-valida-
tion, (2) bootstrapping and (3) lever-
age correction. In cross-validation, one 
constructs models after judiciously leav-
ing out segments of calibration samples. 
Then an estimate of RMSEP follows by 
averaging squared prediction errors for 
the left-out samples, as in external vali-
dation. To emphasise that this estimate 
is not based on independent valida-
tion samples, it will be denoted as root 
mean squared error of cross-validation 
(RMSECV) in the remainder of this paper. 
Bootstrapping performs similarly to cross-
validation,4,5 whereas leverage correc-
tion is only a “quick and dirty” alternative 
when applied to PLS.6 In the remainder 
we will therefore focus on internal valida-
tion using cross-validation.

As we have discussed in the past, 
conventional validation-based compo-
nent selection is problematic for various 
general and specific reasons which have 
been well documented.7–10
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A novel approach
Wiklund et al.11 suggested assessing the 
statistical significance of each individ-
ual component that enters the model. 
Theoretical approaches (using a t- or F-
test) have been put forward but they 
are all based on unrealistic assump-
tions about the data, e.g. the absence 
of spectral noise, see Wiklund et al.11 
for examples. A pragmatic data-driven 
approach is therefore called for. A so-
called randomisation test is a data-driven 
approach and therefore ideally suited 
for avoiding unrealistic assumptions. For 
an excellent description of this method-
ology, see van der Voet.12 The rationale 
behind the randomisation test in regres-
sion modelling is illustrated in Figure 1. 
Randomisation amounts to permuting 
indices and the randomisation test is 
often referred to as a permutation test. 
In QSAR (quantitative structure–activity 
relationship) applications it is known as 

“Y-scrambling”. Clearly, “scrambling” the 
elements of Y, while keeping the corre-
sponding numbers in X fixed, destroys 
any relationship that might exist between 
the X- and Y-variables. Randomisation 
therefore yields PLS regression models 
that should reflect the absence of a real 
association between the X- and Y-varia-
bles. For each of these random models, 
a test statistic is calculated. The value for 
a test statistic obtained after randomi-
sation should be indistinguishable from 
a chance fluctuation. For this reason, it 
will be referred to as a “noise value”. 
Repeating this calculation a number of 
times generates a histogram for the null-

distribution, i.e., the distribution that holds 
when the component under scrutiny is 
due to chance—the null-hypothesis (H0). 
Next, a critical value is derived from the 
null-distribution as the value exceeded 
by a certain percentage of “noise values” 
(say 5% or 10%). Finally, the statistic 
obtained for the original data—the value 
under test—is compared with the criti-
cal value. The (only) difference with a 
conventional statistical test is that the crit-
ical value follows as a percentage point of 
a data-driven histogram of “noise values” 
instead of a theoretical distribution that is 
tabulated, e.g., t or F.

Experimental
The example data set
A near infrared (NIR) spectral data set 
serves to illustrate the problems with 

the conventional validation approach 
to avoid over-fitting. This type of spec-
tral data provides critical test cases for 
PLS component selection procedures 
because tiny substructures may have 
predictive value. The example data set 
contains NIR spectra (X) for 239 gas 
oil samples measured between 4900 
and 9000 cm–1 (Figure 2). The property 
of interest (Y) is the hydrogen content. 
The reference values were determined 
by nuclear magnetic resonance, which 
has an estimated measurement error 
standard deviation σref=0.025 g / 100 g. 
Eighty-four samples were used for cali-
bration and 155 samples for validation. 
It is noted that the majority of the avail-
able samples was selected for (exter-
nal) validation, which is quite unusual in 
practice. However, Fernández Pierna et 
al. had chosen this particular data split to 
test expressions for multivariate sample-
specific prediction uncertainty.13 In other 
words: focus was more on assessing 
the predictive ability of a model than on 
obtaining the best model. For the current 
study it is useful to have a relatively large 
validation set because external validation 
is generally considered to be the “gold 
standard”.

Calculations
The randomisation test was imple-
mented in Matlab 7.0 (The Mathworks, 
Natick, MA, USA) and the program is 
available from the first author. Histograms 
of “noise values” were generated using 
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Figure 1. Generating the distribution under the null-hypothesis (H0) by building a series of PLS 
models after pairing up the observations for predictor (X) and response (Y) variables at random. 
Any result obtained by PLS modelling after randomisation must be due to chance. The statistical 
significance of the test statistic obtained for the original data follows from a comparison with the 
corresponding randomisation results.
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Figure 2. NIR spectra of the example data set.
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1000 permutations. Although as few 
as 100 permutations can be used,12 
this relatively large number ensures 
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Figure 3. Validation results for the example data set: (top panels) internal RMSECV ( ) for the 
84 calibration samples and (bottom panels) external RMSEP ( ) for the 155 independent valida-
tion samples. To better exploit the vertical scale, the first point is omitted in panels (b) and (d).

that the resulting histograms are fairly 
smooth. For the current example data 
set (84 samples × 2128 wavelengths), 

the computations were completed 
within seven CPU seconds on a 3.4 GHz 
personal computer. To calculate the risk 
of over-fitting when, in fact, none of the 

“noise values” exceeds the value under 
test, the so-called inverse Gaussian func-
tion is fit to the “noise values”. This func-
tion is often suited for modelling positive 
and/or positively skewed data.14

Results and discussion
The conventional validation 
approach
Both internal validation using cross-vali-
dation and external validation—the “gold 
standard”—lead to a rather subjective 
decision process (Figure 3). The global 
minimum in RMSECV is achieved for nine 
components (see top panels). However, 
the five-dimensional model achieves 
the first local minimum in RMSECV and 
the “improvement” in RMSECV obtained 
by adding components 6–9 is hard to 
appreciate. Likewise, the external RMSEP 
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estimates continue to decrease until 
eight components have been fitted, but 
the rate of “improvement” is difficult to 
assess (see bottom panels). The analyst 
faces major difficulties to decide objec-
tively whether a further decrease of 
RMSEP is worthwhile or merely results 
from “statistical fluctuations”. We suspect 
that to obtain a clear minimum, many 
more samples are required since the 
law of diminishing returns is in force—
Equation (2). However, the currently 
available total number of samples (239) 
is already quite favourable.

The proposed alternative
Histograms of “noise values” generated 
for components 1–8 are presented in 
Figure 4. It is observed that the probability 
that the value under test is due to chance 
(α) is extremely small for components 1 
(0.0009%), 2 (0.02%), 4 (0.0006%) 
and 5 (0.002%). Interestingly, the signif-
icance of component 3 is only 3.3%. We 
speculate this to be due to component 3 
taking care, with some difficulty, of subtle 
non-linearities in the spectra, after which 
the remaining linear contributions are 
conveniently handled by components 
4 and 5. The high α-values for compo-
nents 6–8 constitute a clear unambigu-
ous warning that over-fitting starts after 
the 5th component.

Concluding remarks
The conventional validation approach to 
component selection is problematic in 
practice because, often, the RMSEP esti-
mates do not yield a clear global mini-
mum. In such a case, the analyst has to 
resort to “visual inspection” and its asso-
ciated “soft” decision rules.

This all leads to a rather subjective 
decision process, which makes the 
proposed statistical alternative rather 
attractive. So if software were to make 
use of this approach the requirement for 
automated warnings could well be met! 

Well done Klaas!—A.N.D.
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Figure 4. Randomisation results for the example data set: histogram of 1000 “noise values”, fit 
using the inverse Gaussian function (——) and value under test (- - -). The symbol α stands for 
the significance level.


