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Introduction
It had been intended that this column 
would be about PLS calibration, but 
before we do this we need to fill a gap. 
When we compute calibrations we 
need some “figure of merit” to decide 
if we have a “good” calibration. These 
are calibration statistics which have not 
been discussed in this column for a long 
time.

r2?
Many people know and use a calibra-
tion statistic—the square of the product–
moment correlation coefficient, r2—so 
why not just use this? There is a prob-
lem with r2 but a demonstration may be 
more persuasive than a lecture.

Figure 1 is a scatter plot of a calibration. 
It is actually a simulated calibration using 
data calculated from the model:

y = a + bx + e

with the “e”s normally distributed and in 
the data shown a = 0 and b = 1. The cali-
bration was produced by a calibration set 
of 200 samples with a range of values 
from 10 to 20 and a variability that gives 
it an r2 of 0.903.

Figure 2 shows a test of the calibra-
tion with a test set of 100 samples with 
a range of values from 13 to 17. The r2 
was 0.625. Judging by the r2 this is not a 
good calibration. If we increase the range 
of the test set to be between the values 
of 12 and 18 the r2 rises to 0.786, Figure 
3. If we increase the range of the test set 
to match the calibration (values of 10 to 
20), Figure 4, then the r2 increases to 
0.911. The value of r2 depends on the 
range!

SEP
If r2 is not the best choice for measur-
ing the merit of a calibration, then what 
is? The answer is the standard error of 

performance (or prediction), SEP, which 
is a measure of the variability of the 
difference between the predicted and 
reference values for a set of validation 
samples. The starting point is a set of 
reference values ri and of predictions 
pi for n samples in a validation set. Let 
di = ri − pi be the difference between 
reference and predicted for the ith 
sample. Then the simplest way of calcu-
lating SEP is as the root mean square of 
differences:

RMSEP = √{(Σdi
2) / n}

where the sum, like all those that follow, 
is over all samples, i.e. from 1 to n. 
Because all the differences get squared, 
it does not matter whether one uses 
ri − pi or pi − ri in the calculation of di. 
This SEP is an estimate of what a typical 
difference between prediction and refer-
ence values is likely to be when the cali-
bration is used for real. As such, it rightly 
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Figure 1. Plot of the simulated calibration. r2 = 0.90. Figure 2. Plot of results from a test set of 100 samples in the range 
13–17; r2 = 0.625.
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includes contributions from several 
sources, including errors in the reference 
measurements.

Unfortunately there are other versions 
of the calculation, the most common 
being the one which is corrected for bias, 
SEP–b.

First calculate the average difference

bias = (Σdi) / n

Then subtract this from each difference 
in the calculation of SEP–b, giving

SEP–b = √[{Σ(di − bias)2} / (n − 1)]

It can be shown that* the relationship 
between the two is:

RMSEP2 = SEP 2
–b + bias2

If we were able to know what the bias 
would be when we predict real samples, 
SEP–b would be a useful statistic but if 

the bias has changed since the calibra-
tion was done then there is no way of 
knowing that it will not change again. 
The tendency is for people to forget that 
they have removed the bias! So either 
use RMSEP or bias and SEP–b. If the 
bias is small, then RMSEP and SEP–b will 
be similar. The values of these statistics 
for the previous examples are shown in 
Table 1.

With a simple linear regression like this 
one, the SEC, calculated from the differ-
ences between reference and predicted 
values for the training data by a formula 
like that for RMSEP but with a divisor 
of n – 2 to allow for the fact the predic-
tion line has been fitted to these data, 
is a reliable predictor of what the SEP 
should be on validation data. Here the 
value of 0.621 is indeed close to the 
observed SEPs. Unfortunately, in the 
case of multivariate calibration with large 
numbers of predictors, SEC is not a reli-
able guide to future performance, and 
we need a validation set to estimate SEP 
directly.

Conclusion
Chemometric sof tware will proba-
bly continue to compute and display 
r2 values for ever and if it is there it is 
impossible not to take note of it, but be 
guided by the RMSEP or SEP–b and bias 
values. Calibrations should, of course, be 
tested over the range in which they will 
be used.

Figure 3. Plot of results from a test set of 100 samples in the range 
12–18; r2 = 0.786.

Figure 4. Plot of results from a test set of 100 samples in the range 
10–20; r2 = 0.911.

Variable Test set 1 Test set 2 Test set 3

Range 13–17 12–18 10–20

r2 0.625 0.786 0.911

RMSEP 0.615 0.615 0.616

SEP–b 0.616 0.616 0.618

bias –0.050 –0.045 –0.036

Table 1. Statistics for the examples shown in Figures 2–4.

*For readers who enjoy some algebra!
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