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We will be writing a column next 
year giving some guidance on how 
to apply partial least squares regres-
sion, commonly known as PLS. Perhaps 
because PLS drops the word “regression”, 
PLS tends to be regarded by newcomers 
(and some not so new users) as a magi-
cal piece of chemometrics which has no 
relationship to multiple linear regression 
(MLR) or principal component regression 
(PCR). So in this column we will attempt 
to persuade you that all three methods 
are closely related and that all rely on 
a “least squares” regression. An earlier 
column [8(6), 20 (1996), available on 
the Spectroscopy Europe web site] had 
the same intention but this time we will 
use diagrams generated by a program 
that TF wrote for one of our training 
courses. During use in the training course 
students see it being manipulated but the 
views needed for discussion are essen-
tially static so we hope that it will work 
in this rather larger virtual classroom! The 
program is known as PFdemo (Project 
and Fit demonstration) and essential 
is comprised of two linked graphs and 
some buttons that instruct MATLAB to do 
some calculations and display the results. 
Figure 1 shows the layout with ten data 
points plotted in the left-hand graph. The 
control buttons will not be shown again 
so they will be described now. “Plot x” 
plots ten pairs of data points. These data 
points are from 10 samples for which we 
have values for two variables, x1 and x2 
and a reference value, y. (Note: this data 

stays the same throughout this exam-
ple.) “Project x” generates a blue line, z, 
that can be rotated around the centre of 
the figure on to which the positions of 
the samples are projected. This means 
that the position of a sample on the “z” 
line is determined by the intersection of 
a perpendicular which passes through 
the sample point as shown in Figure 2. 
“Clockwise” and “Anticlock” controls the 
angle of the projection line with respect 
to x1 and “Step size” allows the operator 
a choice from course to fine changes in 
the angle each time a rotation button is 
pressed. Figure 3 shows a different choice 
of angle compared to Figure 2. We can 
calculate the values of z for each of the 
samples (z = c1x1 + c2x2, where c1 and c2 

are the cosines of the angles between 
the x1 and x2 axes): note that the data 
are centred to maintain the display. “Plot 
y, z” plots the projected data against the 
y values in the right-hand graph, Figure 
4. You can see the blue dots on the z 
axis have been directly transferred from 
the left-hand graph. “Fit y, z” calculates 
and displays the line of best fit, i.e. a line 
giving the least sum of squared errors 
for the y, z data, Figure 5. The “Show V”, 
“Show R^2” and “Show prod” buttons 
cause the program to display the variance 
of the z data, the value of R2 for the y, z fit 
and the value of V × R2, Figure 6.

If we use R2 to choose the angle of z, 
we can find the angle which gives a maxi-
mum value for R2 as shown in Figures 7–
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Figure 1. The complete PFdemo display with its control buttons.

Figure 2. Projection on to z. Figure 3. Projection on to another z. Figure 4. z values plotted against y.
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9. This is the value which corresponds to 
an MLR solution.

If we use V to choose the angle of z, 
we can find the angle which gives a maxi-
mum value for V as shown in Figures 10–
12. This is the value which corresponds 
to a one-factor PCR solution. Note that 
we show the value of R2 in Figure 12 but 
this was not used to guide the choice of 
z. By maximising the variance in the z 
data we hope to include the information 
which relates the original variables to the 
y data but we are protected from over-
fitting because we do not start to test the 
least squares fit until after the z values 
have been determined.

If we use “Product” to choose the 
angle of z, we can find the angle which 
gives a maximum value for the product 

V × R2 as shown in Figures 13–15. This is 
the value which corresponds to a one-
factor PLS solution. Note that we show 
the value of R2 in Figure 15 but this was 
not used to guide the choice of z. In PLS 
we compromise between just using V or 
just using R2. PCR and PLS tend to give 
similar results but PLS usually gets to an 
optimum solution with fewer factors than 
PCs in the PCR solution.

You may think that this demonstration 
shows that the MLR (R2) solution is the 
best method. With two variables it may be 
best, but with many variables it is too easy 
to make R2 = 1, even when there is noise 
in y. If there were only three samples in 
the plots here, we could make R2 = 1, 
whatever the values for y. If we apply the 
MLR solution with 700 variables then we 

will produce a calibration which is grossly 
over-fitted and it will not give good predic-
tions of unknown samples. If we use the 
PCR or PLS solutions we may not get such 
a good R2 but we will be protected (if we 
follow the rules) against over-fitting, so our 
calibration will have a predictable perform-
ance. It is very important to remember 
when doing calibrations that we should 
seek a calibration with good prediction 
performance.

Of course, this is not how MLR, PCR 
or PLS are actually computed but it is an 
exactly equivalent method. It is not too 
difficult for you to imagine the graphs 
if we started with three variables and a 
three-dimensional cloud of datapoints 
(but very much more difficult to write the 
display program) but then we run out of 
human vision experience. Mathematically 
there is no such limit; the trick is to say 
700 variables and think three!

Please note that we do NOT use the 
words “best calibration”. We would not 
know which is the “best” calibration for 
many years; what we need is a reliable 
calibration which will give useful results.           

Figure 5. Best fit line for y, z data. Figure 6. Display of statistics.

Figure 13. Looking at V × R2. Figure 14. Improving V × R2. Figure 15. Best V × R2.

Figure 10. Low V. Figure 11. Better V. Figure 12. Best V.

Figure 7. Rotating z to improve R2. Figure 8. Better R2. Figure 9. Best R2.


