
Partial least squares (PLS) was
invented by Herman Wold in the
1970s1 and then modified by his son
Svante and Harald Martens in the early
1980s2 for use in regression. However,
as anyone who has been reading these
columns or taking a general interest in
chemometrics will know, the name
that is most strongly associated with
partial least squares (regression) (PLS) is
Harald Martens’. PLS is, of course,
widely used by the NIR and chemo-
metric communities but Harald has
been irritated for many years by the
reluctance of the statistical community
to accepted it. One of the criticisms of
PLS has been the lack of established
statistical theory for significance testing
of the model parameters. Last year
Harald and his wife Magni published3 a
very clever way of achieving not only a
test but (with Frank Westad) of using it
as a method of selecting those variables
that should be retained in a PLS reges-
sion.4,5 I am able to demonstrate it for
you as the procedure has been included
into the latest version (7.6) of the
Unscrambler® software package from
Camo. The method was first called
“The Jacknife” but this terminology
has been used elsewhere in statistics so
it may be better to call it “Uncertainty
testing”. This is the name used by
Camo.

Uncertainty 
testing

We often use cross-validation6 in the
development of PLS methods to deter-
mine the number of factors which
should be retained. When the original
programs were written, computer
memory was at a premium and so only
intermediate results that were required
later could be retained. Nowadays, we
are generally rich in storage space and
so we can retain as many intermediate
calculations as we like. When we do
cross-validation by the original pro-
gram it does not retain all the estimates
of the regression coefficients but the
Martenses realised that if you did, then
you could use them to estimate the
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PLS1: Oct_226 2D Scatter Plot
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Figure 1. Calibration for octane using 226 NIR variables. Clockwise
from top left: scores plot for first two factors; regression coefficients
against wavelength; predicted against reference for the calibration
set; residual validation variance against number of factors (PCs in
Camo terminology).

PLS1: Oct_226 Line Plot
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Figure 2. Significant regression coefficients in the regression shown
in Figure 1.



variance of the coefficients and hence
test if they were significantly different
from zero. Once you have the test you
can then proceed to use it to decide
which variables should be dropped
from the original data set.

A demonstration
I am continuing to use the Camo

octane data set7 mainly because I can
refer to previous articles,8,9 which
hopefully some of you will remember!
It is not suppose to be an ideal set for
such a demonstration. The set contains
a training set of 26 and a test set of 13
samples measured at 226 NIR wave-
lengths with octane number measure-
ments as the reference chemistry.

The last time I used the data I
showed that after we had eliminated
two outlying samples we could develop
a PLS regression that gave a RMSEP of
0.41. Another possible calibration based
on the first 101 variables did not per-
form well on the test set and gave a
RMSEP of 0.88.

Figure 1 shows the calibration plots
for the model using all variables but
omitting the two outliers. This used full
cross-validation (i.e. every sample in
turn was left out, a model was comput-
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PLS1: Oct_first 2D Scatter Plot
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Figure 3. Calibration for octane using 40 NIR variables. Plots as
Figure 1.

PLS1: sig18_40 2D Scatter Plot
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Figure 7. Stability scores plot for the first two fac-
tors of the calibration shown in Figure 5.

PLS1: sig18_40 2D Scatter Plot
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Figure 5. Calibration for octane using 18 NIR variables. Plots as
Figure 1.

Prediction: Sig18_40 2D Scatter Plot
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Figure 6. Plot of predicted against reference for the
test set using the calibration shown in Figure 5.
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Figure 4. Significant regression
coefficients in the regression
shown in Figure 3.



ed and used to predict that sample) but
I also ticked the new “Uncertainty test”
box. Figure 2 shows the regression
coefficients with the significant variables
marked. These indicate two areas of the
data with significant coefficients. From
the previous study9 we know that the
second area is associated with the out-
liers so it will be a good idea to use the
first area. Figure 3 shows the results of
building a new model with this reduced
set of 40 variables. As this was a new
model I included all the data, and the
scores plot (top left) does not indicate
the presence of any serious outliers so
we can use all 26 samples in the training
set. When tested on the 13 samples in
the test set, this model gives a RMSEP
of 0.33 this appears to be an improve-
ment but we are not finished yet. I had
again ticked the “Uncertainty test” box
so that we can see if all the variables in
the reduced set give rise to significant
coefficients. The plot, Figure 4, shows
that only eighteen of them are signifi-
cant so we go round the loop again and
compute a model with these eighteen
variables; the results are shown in
Figure 5. This model gives a RMSEP
on the test set of 0.31, Figure 6. It is
unlikely that this result is significantly
different from the 40 variable model
but if it had been tested on a reasonably
large data set it would be preferred
because the model contains fewer
terms.

There are some additional benefits
that come from uncertainty testing and
one of these is shown in Figure 7. This
shows the variability of the factor
scores from each iteration of each sam-
ple in the cross-validation. The centre
of each “star” is the final model, while
the results from each iteration are
shown as a cross with a line to the cen-
tre. The circle indicates the computed
score when that sample was left out of
PLS calculation. If it is far from the
centre (sample 26) then it indicates that
it is a sample with high influence.

Uncertainty testing is a “win-win”
development for PLS. Not only has
Harald been able to provide an impor-
tant test for the regression coefficients
but the test provides us with a simple
method of reducing the number of
unnecessary variables, which should
give rise to more robust models that
are also more easily transferred across
different spectrometers. As Westad and
Martens have shown, it is not very dif-
ficult to automate the procedure so in
the future I think we will see PLS cali-
brations which utilise relatively few
variables become the norm.

Anyone who is interested in under-
standing the underlying statistics should
read the description of “The Jacknife”
by Tom Fearn.10
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