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In the last column1 we showed how we could perform
Fourier transformation (FT) of a near infrared (NIR) spec-
trum in a few lines of matrix algebra and said that in this col-
umn we would use it in a novel way. The task we are going
to perform is that of changing scales of spectroscopic (NIR)
data. This may be novel, we are not aware that anyone else
does it this way, but of course instrument manufacturers
sometimes like to be silent about the methods they employ.

NIR spectra may be measured by a dispersive or an FT
instrument.* Data points in an NIR dispersive spectra are
measured at equal intervals of wavelength (λ, nm) while in a
spectrum generated by an FT instrument the data points are
at equal wavenumber intervals (ν

_
, cm–1) The relationship

between wavelength and wavenumber is λ = 107/ν
_
. The

problem of switching scales is not trivial because of this recip-
rocal relationship between them; wavenumbers at equally
spaced intervals will not be at equal intervals when converted
to nanometers. Plotting programs normally assume that the
data are spaced at equal intervals and data files will normally
contain only an initial wavelength or wavenumber and the
interval between data points rather than a specification of
every data point. As far as we are aware, scale conversion
from wavenumber to wavelength is normally done by fitting
a function through data in a small window. The method that
we are describing in this article was almost suggested by Fred
McClure in the original paper2 on the use of FT in NIR data
compression. He said “… In fact the Fourier transform may be
searched to compute the magnitude of the computed spectrum at the
required wavelengths rather than re-computing the entire spectrum”.

We are going to compute the spectrum at a set of 700
wavenumber values which happen to translate to a series of
points at 2 nm intervals in a wavelength scale!

Test spectra
To illustrate the idea we are using spectra provided by our

friend and NIR colleague, Professor Heinz Siesler of the
University of Essen, Germany. These are of a sample of a
mixture of rare earths which was measured on an FT and on
a dispersive instrument. We will transform the wavenumber
spectrum to wavelength and compare it with the dispersive

spectrum. The initial wavenumber spectrum is shown in
Figure 1.

Program
The program required for this scale change is very similar

to the TDeious Fourier transform program1 except in the cal-
culation of the reconstructed spectrum and so we will repeat
it with a few additional comments. To assist in understanding
the program we include Table 1, which is a list of all the
variables.

Instructions are in red while comments are in green. If you
have Matlab and wish to try the program, you do not need to
type in the code, it is available on the Spectroscopy Europe web
site at http://www.spectroscopyeurope.com/td_col.html.
% TDeiousTwo Fourier Transformation (Scale 
% Changer) Converts from wavenumber to 
% wavelength
% Get wavenumber spectrum

load HS1;

d=(S_XV(2,1:2640))’; 

% This spectrum was measured from 9090 wn to
% 3812 wn for a total of 2640 points

dp=2640;

wnmax=9090.89;

wngap=1.92776;
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Figure 1. NIR spectrum of a sample of a mixture of
rare earths measured on an FT instrument; log1/R
against wavenumber (cm–1).

*Although they are popularly known as “FT” instruments this
is not a very accurate description. The instruments are inter-
ferometers, which produces  interferograms. The interfero-
grams are converted to  spectra using the fast Fourier trans-
form.3 However, we will use the popular terminology.



wnmin=wnmax-(dp-1)*wngap;

wnr=[wnmax:-wngap:wnmin];

figure

plot(wnr’,d) % Figure 1

set(gca,’XDir’,’reverse’) % this reverses the
% scale on the wavenumber axis

% Calculate FT using equations on p186 of 
% McClure’s article in Handbook of NIRA

% Tilt spectrum to make ends equal

dm=dp-1;

% calculate slope

s=(d(dp)-d(1))/dm;

e=s*[0:dm]’;

% adjust data by slope

e1=d-e;

y=e1;

n=size(y,1);  % number of data points

k=n/2;        % half number of data points

t=[1:n]’;     % n x 1 col vector 1,2,...,n

p=[1:k];      % 1 x k row vector 1,2,...,k

wpt=(2*pi/n)*(t*p);

% n x k matrix with ij’th element 2(pi)ij/n

C=cos(wpt); % n x k matrix of cosines

S=sin(wpt(:,1:(k-1)));

% n x k-1 matrix of sines (omit last one
% because it would be a col of zeros anyway)

X=[ones(n,1) C S];

Spectroscopy Europe 12/6 (2000) 23

TONY DAVIES COLUMN

Name Size

C 700×1320
S 700×1319
S_XV 2×700
X 2640×2640
Xi 700×2640
d 2640×1
dd 700×1
div 2640×1
dm 1×1
dp 1×1
e 2640×1
e1 2640×1
ei 700×1
fc 2640×1
fcs 1×1
k 1×1
n 1×1
ni 1×1

Name Size

npairs 1×1

p 1×1320

s 1×1

t 2640×1

ti 700×1

w 700×1

wn 700×1

wngap 1×1

wnmax 1×1

wnmin 1×1

wnr 1×2640

wpt 700×1320

xfit 700×1

xfits 1×700

y 2640×1

Table 1. Dimensions and size of all the variables
used in TediousTwo.



% put together into n x 2M matrix

div=n*[1 (1/2)*ones(1,k-1) 1 (1/2)*ones(1,k-
1)]’;

% 2k x 1 col vector of divisors fc are the
% Fourier coefficients order is
% a0,a1,...,aM,b1,...,b(k-1) Fred McClure
% orders his differently

fc=(X’*y)./div;

% This does the summations

% THIS IS THE NEW SECTION
% now we invert the transform, not at the
% equally spaced wavenumber points we started
% from, but at equally spaced wavelength
% points this will involve some interpolation,
% so we have to smooth a little by omitting
% the very high order coefficients

npairs=330; % Number of pairs of Fourier 
% coefficients to use when inverting

fcs=npairs+1;

% make unrequired coefficients 0

fc(fcs:k)=0;

fc(k+fcs:n)=0;

% set up vector with points at which to invert

w=[1100:2:2498]’;

% convert this to wavenumbers

wn=(1e7)./w;

% now convert these to a scale from 1 to 2640

ti=1+(wnmax-wn)/wngap;

% now create an X matrix just like the one 
% used for the FT, but with different t. i.e.
% with sines and cosines calculated at the
% points at which we wish to invert

ni=size(ti,1);

wpt=(2*pi/n)*(ti*p);

C=cos(wpt);

S=sin(wpt(:,1:(k-1)));

Xi=[ones(ni,1) C S];

% now invert, but using Xi instead of X

xfit=Xi*fc; % THIS IS THE CRUCIAL LINE OF
% MATRIX MULTIPLICATION!!

plot(w,xfit,’g’); % Figure 2

hold on

% get dispersive spectrum and plot for 
% comparison

load HS2;

dd=(S_XV(2,:))’; 

plot(w,dd,’r’); % Figure 3

pause

% Un-tilt the spectrum (not really required in
% this case differences due to technology; 
% dispersive spectrum is almost flat) be 
% careful, need to convert to 1-2640 scale on
% which linear baseline was subtracted

ei=s*(ti-1);

xfits=xfit’+ei’;

figure

plot(w,xfits); % Figure 4

hold off
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Figure 3. Calculated spectrum (green) compared to
the wavelength spectrum (red) measured on a dis-
persive instrument; log 1/R against wavelength (nm).

Figure 4. As Figure 3 with the tilt correction applied
to the recalculated spectrum (blue); log 1/R against
wavelength (nm).

Figure 2. Wavelength spectrum of the rare earth mix-
ture calculated by Fourier transformation from the
data in Figure 1; log 1/R against wavelength (nm).



Discussion
The peaks in the switched spectrum

appear to line up with the peaks in the
dispersive spectrum while retaining
much of the high-resolution informa-
tion seen in the wavenumber version.
The is no obvious way of determining
the number of pairs of Fourier coeffi-
cients to retain but 330 is a quarter of
the original number and should contain

almost all of the useful information
without running too much of a risk of
interpolating between points in high-
frequency waves (which could give rise
to large errors). This example was
deliberately used because it contains
some sharp peaks, due to electronic
absorptions, which are resolved by the
higher-resolution (FT) instrument.
Absorptions due to molecular vibra-
tions in the NIR region are usually
much broader and the resolution dif-
ference between the different systems is
much less obvious. The program, with
slight modifications, could be used to
convert wavelength spectra to
wavenumber spectra but it is not very
likely that this would ever be required.
The common format is wavelength and
converting from wavelength to
wavenumber by any method cannot
“discover” the higher resolution which
is normally available in FT systems. We
are not sure if there are any advantages
of this FT method, which was pro-
duced for this demonstration. As writ-
ten it is quite slow; this could be
speeded by using the FFT for the first

transformation but the switch to wave-
lengths has got to use the TDeious
method.

Matrix 
multiplication

This article has not introduced any
new matrix algebra but (after feed-back
from the previous article) we would

like to make quite sure
that everyone understands
what happens in matrix
multiplication, see Box 1.
For matrix multiplications
the number of columns in
the first matrix must be
equal to the number of
rows in the second. In
matrix A the background
is white and the numbers
are colour coded by row,
while in matrix B the
numbers are white and
the background is colour
coded by columns. This
should enable you to see
where all the products
come from before they
are summed in the appro-
priate element of the new
matrix C. Note that in
matrix algebra, A × B is
not the same as B × A.  In
the program, as it stands at
the moment, you will not
find an example of the
multiplication of two
matrices. In the “Crucial
line” fc is a column vec-

tor because we have only one spec-
trum. If we were considering several
spectra then fc would become a matrix
without any change in the code! This is
one of the great advantages of well-
constructed matrix algebra coding.

The next column
This is not the end of matrix algebra!

However, the first (chemometric) TD
column of 2001 will be concerned
with another topic. We will return to
matrix algebra latter in the year.

Acknowledgement
We are very grateful to Heinz Siesler

for allowing the use of his test spectra.

References
1. A.M.C. Davies and T. Fearn,

Spectrosc. Europe 12(4), 28 (2000).
2. F.G. Giesbrecht, W.F. McClure

and A. Hamid, Appl. Spectrosc. 35,
210 (1981).

3. J.W. Cooley and J.W. Tukey,
Maths. Comput. 19, 297 (1965).

Spectroscopy Europe 12/6 (2000) 25

TONY DAVIES COLUMN

6     7
3     5
2     1

1       4       6
2       8       9

A B×

=

=

=

( ) + ( )

( ) + ( )

( ) + ( )

× ×
× ×
× ×

6 71 2

1 2

1 2

3 5

2 1

( ) + ( )

( ) + ( )

( ) + ( )

× ×
× ×
× ×

6 74 8

4 8

4 8

3 5

2 1

( ) + ( )

( ) + ( )

( ) + ( )

× ×
× ×
× ×

6 76 9

6 9

6 9

3 5

2 1

C

C

D

D

=
20     80     99
13     52     63
4     16     21

6       7
3       5
2       1

1       4       6
2       8       9

B × A

( ) + ( ) + ( )

( ) + ( ) + ( )

× × ×
× × ×

1 4 66 3 2

6 3 22 8 9

( ) + ( ) + ( )

( ) + ( ) + ( )

× × ×
× × ×

1 4 67 5 1

7 5 12 8 9

30     33
54     63

Box 1.


