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. Introduction 
I would like to welcome readers who are 

new to this column with a few words of 
explanation. Chemometrics is a subject which 
has generated (and continues to generate) 
much interest and excitement in analytical 
spectroscopy. While there is a rather small 
band of experts who are developing new 
techniques, it is not necessary to be an expert 
to utilise chemometrics given some basic un­
derstanding of the limitations and potential 
piifalls for the unwary user of chemometric 
computer software. I am not a chemometri-

TONY DA VIES COLUMN 

cian, but I have friends who are. The aim of 
this column is to provide a bridge between 
chemometricians (who are expert mathemati­
cians) and potential spectroscopic users who 
are probably not mathematicians. The inten­
tion is that users should develop an under­
standing which will provide a suitable balance 
between rejection of unknown methods and 
unqualified enthusiasm for "black-box" soft­
ware. This should enable them to make 
suaessful use of these poweiful enhancements 
to good spectroscopy. Photocopies of the pre­
vious articles in the Chemometrics Column 
series in Spectroscopy World are available 

from the publishers at a very modest cost and 
after this issue it will be assumed that readers 
have the knowledge or the reprints. 

Former readers of Spectroscopy World 
will recognise my article on Principal Compo­
nent Analysis (PCA) which is repeated to 
enable new readers to fully comprehend the 
new article by Ian Cowe. While Ian may 
claim NOT to be a chemometrician, his paper 
on the utilisation of PCA is probably one of 
the most frequently referenced papers in near 
infrared spectroscopy. It is a great pleasure to 
welcome him to the first of these Columns in 
Spectroscopy Europe. 

The principles of principal component analysis* 
by Tony Davies, Column Editor 

Since the beginning of this column we 

have been taking a fairly relaxed tour of 

chemometric concepts while attempting 

to exclude mathematics as far as possible. 

I do not intend to change this approach, 

but in future columns we will have to be 

able to make assumptions of comprehen­

sion of some key topics. Principal Com­

ponent Analysis (PCA) is one of the 

fundamental methods of multi-variate 

analysis and hence of chemometrics. It 

was introduced in an early column [Spec­

troscopy World 2(2), 32 (1990)] but it is so 
important that this and the next column 

will be devoted to it. 

PCA is a method of data analysis 
which requ1res a matrix of samples and 

variables. It finds the maximum vari­

ations in the data and fo rms new variables 

[known as Princtpal Components (PCs)] 
such that: 

each successive PC accounts for as 
much of the remaining variability as pos­
sible except that, 

each new variable must be orthogonal 
(at right angles) to all other variables. 

PCA is easily defined by matrix algebra 

but the intention of this column is to 

present ideas in diagrammatic forms. 

This makes life difficult, because we are 

visually restricted to three dimensions 

and thus we can only illustrate the work­

ing ofPCA in terms of three variables. It 

is important to realise that the power of 

PCA is in being able to examine large 

numbers of variables and to compute 
many principal components which are 

mathematically orthogonal to each 

other. In some discussions of PCA this 

ability is not emphasised because of the 
difficulties of demonstrating it and the 

reader could be left with the impression 

*reprinted from Spectroscopy World 4(1), 
23 (1992). 
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Figure 1. 30 data. 

Figure 2. First PC. 

Figure 3. Second PC. 

that we only use two or three principal 

components . Except for very simple 

data, the number of principal compo-
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Figure 4. Scores plot. 
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Figure 5. Weights plot. 

nents is more likely to be between 10 and 

20. 
The output from PCA is in the form 

of two tables and some statistical infor­

mation. The first of these contains values 
·for each sample on each Principal Com­

ponent. These are known as scores. The 

other contains coefficients used to com­

pute the components from the original 

variables which are known as weights (or 

sometimes coefficients). Both contain 

useful information. The scores are 

mainly concerned with the samples and 

can be used in place of the original vari­

ables, while the weights show how the 

components are formed and tells about 

the distribution of information in the 

data set. If you remember the article 
about cutting the data cake [Spectroscopy 

. World 2(1), 35 (1990)] then the weights 
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are represented by the shape of the cutter 
and the table of scores are new slices of 
the computed cake. One of the impor­
tant statistics from a PCA is the total 
percentage of variance explained. This 
should be very close to 100%. The first 
few PCs will contain the majority of the 
variance but experience with PCA soon 
leads one to take notice of the later PCs 
which may explain only very small vari­
ances; sometimes this can be the crucial 
information in your data. Not retaining 
sufficient PCs can be like throwing out 
the baby with the bath-water. 

Figure 1 shows a three-dimensional 
plot for three variables measured on a set 
of13 samples. In Figure 2 PCA has found 
the vector which contains the maximum 
amount of variability and this will form 
the first PC. In Figure 3 the PCA has 
found the position and orientation of a 

TONY DA VIES COLUMN 

vector which is at right angles to the first 
PC and contains the maximum amount 
of variability compared with all the vec­
tors which conform to the specification; 
this is the second PC. Figure 4 shows the 
scores for the samples as a plot of the two 
PCs and Figure 5 shows plots for the PC 
weights . Figure 4 contains 98% of the 
variation present in the original three 
variables. The first component ac­
counted for 73% and the second for 25% 

of the total variance. It can be seen from 
the weights plot that the first component 
is dominated by the second variable, 
while the second component is largely a 
product of the first and third variable. 

Notes 
have tried to keep this explanation as 

simple as possible. Perhaps I should make 
the point that before carrying out PCA 

it is usually necessary to transform the 
data. This involves correcting for the 
mean (i.e. subtracting the mean value of 
that variable) and sometimes stand­
ardising by making the variance of each 
variable equal to 1. Most software pack­
ages will do this for you so that my simple 
model is sufficient until you want to 
check that your program is giving correct 
answers! 

The orthogonality of PCA is actually 
a dual orthogonality. Not only are the 
vectors orthogonal but also the scores are 
uncorrelated (i.e. orthogonal). 

Acknowledgement 
[ am grateful to Tom Fearn for making 

sure that during my efforts to obtain 
simplicity I have not strayed from a valid 
description of PCA. 

Applications using principal component analysis 
Ian A. Cowe 
10 Buddon Drive, Monifieth, Dundee DD2 5DA, Scotland. 

In a previous article, Tony Davies ex­
plained how principal components are 
derived and defined some of their basic 
properties. In this article, I will look at 
one application of Principal Component 
Regression (PCR) to predict composi­
tion and also consider applications where 
components are used as an assessment of 
some aspect of functionality without di­
rect use of constituent data. Although the 
applications discussed will relate to near 
infrared diffuse reflectance spectroscopy, 
the same general principles apply in other 
fields. 

PCR is a chemometric technique 
which uses all the spectral data to predict 
composition. It provides two new vari­
ates, "weight$' , which represent the 
relative importance of each of the origi­
nal data values to the components and 

which can be used for spectral interpre­
tation and "scord' which condense the 
original data into a few uncorrelated val­
ues which can either be regressed against 
chemical values, or examined by other 
techniques such as discriminate analysis 
to reveal some underlying trend or rela­
tionship. 

Scores are derived solely from the 
spectral data and we obtain a score for 

each sample on each principal compo­
nent. Each orthogonal vector (or PC) 
represents in tum a decreasing amount of 
the spectral variation. By monitoring the 
cumulative variance as each component 
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is derived we can determine easily how 
many components are needed to model 
the variation that relates to major physi­
cal and chemical effects. 

A real application, in this case wheat 
flour with values for protein and mois­

ture, 1 shows how easy it is to use PCR. 
Table 1 shows a summary for the first few 
components. Although we normally de­
rive between 10 and 20 components, in 
this case only the first few correlated with 
moisture and protein. The remainder 
had uniformly low correlations and to­
gether represented less than 0.02% of the 
spectral variation. 

To be included in a model, a compo­
nent should have a significant correlation 
with the constituent of interest and ex­
press an amount of spectral variation in 
proportion to its concentration and ab­
sorption coefficient. This avoids the in­
clusion of later components which 

Table 1. Statistics for wheat flou r. 

express practically zero variation but 
have statistically significant correlations 
due to random chance. 

In Table 1, only two components 
(PC 1 and PC2) correlate with oven dried 
moisture. Water is one of the strongest 
absorbers and should be present at about 
12% in these samples. So we should ex­
pect that early components would be 
dominated by water. In fact, the second 
component (r = 0.97) alone would be 
enough to adequately predict moisture 
content. With protein, a weaker ab­
sorber, the first, fourth and, to a lesser 
extent, the third components showed 
some correlation. 

One of the main advantages of PCR 
over conventional wavelength regres­
sion is that spectral interpretation of a 
model is much easier. When all the "x" 
data are spectral values then plots of the 
weights become analogous to spectra. 

PC No. %Var. %Cum.Var. Tm Tp 

98.60 98.60 -0.16 -0.71 

2 0.99 99.59 0.97 -0.08 

3 0.22 99.81 0.09 0.21 

4 0.ll 99.92 -0.05 0.66 

5 0.05 99.97 O.Q7 0.10 

6 0.01 99.98 -0.02 -0.01 
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Table 2. Building regression models for moisture and protein in wheat. 

For moisture 

PC2 + PCl = 0.972 + 0.162 + 0 .092 = 0.983 

PC2 + PCl + PC3 = 0.972 + 0.162 + 0.092 = 0.987 

For protein 

PCl +PC4 = 0.71 2 + 0.662 = 0.969 

PCl + PC4 + PC3 = 0.71 2 + 0 .662 + 0.21 2 = 0.992 

PCl + PC4 + PC3 +PCS = 0.71 2 + 0.662 + 0.21 2 + 0.102 = 0.997 

Figure 1 shows the shapes of the first four 

components. These are plots of the 
weights against wavelength. Typical 

NIR spectra consist of approximately 
700 data points covering the range 1100 

to 2500 nm and so we have 700 weights. 

For each component we get a weight at 

each wavelength and the weights are 
scaled in such a way that as the sum of 

the squared weights across the spectrum 
always equals one. This means that, for 

any component, wavelengths with large 
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Figure 1. First four principal com­
ponents for wheat flour. 

weights are proportionally more impor­

tant in determining the sample score on 
that component than wavelengths with 

weights close to zero. 
If we look at Figure 1, we see that PC2 

(which correlated highly with water) has 

a shape similar to a water spectrum. PC4, 

which correlated highly (r = 0.66) with 

protein, shows protein bands as high 

positive weights at 1980, 2050, 2180 and 

2210 nm. But how do we interpret PC 1? 

It expressed almost all the spectral vari­

ation, correlated highly with protein, yet 
showed no evidence of protein bands. 

In fact, PC 1 relates mainly to baseline 

shifts caused by variation in particle size 
between samples. The particle size of the 

ground flour is dete~ned largely by 
grain hardness, and protein in one of the 

factors which affects hardness. Thus, 

PC1 relates to protein through a secon­

dary correlation with a physical factor. 

Normally the use of an indirect correla­
tion should be avoided but, as this rela-
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tionship,is likely to be stable, here we can 
exploit it in our protein model. 

The orthogonality of principal com­

ponents makes regression modelling a 

simple and predictable process. The mul­

tiple correlation for any combination of 
components relates directly to the indi­

vidual component correlations. We sim­

ply sum the squared individual 

correlations and take the square root to 

obtain the multiple correlation (see Table 

2). Adding PC3 only marginally im-

Figure 2. Scores/scores plot for 
process control. S = start or initial 
value, F = final value. The dashed 
line represents the normal end 
point for the reaction. 

proved the model for moisture, while for 

protein adding PCS made little differ­

ence. Thus we would predict moisture 

using the first two components and pro­

tein using PCs 1,3 and 4. The form of 

the models is as follows: % Protein = 
10.99 + 2.219 x PC1+13.72 x PC3 + 

60.55 x C4; % Moisture = 13.47 + 

0.24 x PC1 + 14.47 x PC2 

One strength of PCR is that, because 

of orthogonality, values of regression co­

efficients do not change when terms are 

added to or subtracted from the model. 

Thus for protein, the largest coefficient 

(PC4) always has a value of 60.55. 

One strength of principal components 

is that they are derived solely on the 

spectral data. They can be used even 

where no suitable reference values are 

available. Take, for example, the prob­

lem of monitoring progress of a batch 

process. An example was presented re­

cently by Griffin, Kohn and Cowie.2 

Using the sample scores we can represent 

· each sample as a single point in a p 
dimensional space (where p is the num­
ber of components). The scores are 

Cartesian co-ordinates defining where 

each point lies within the space. As we 

cannot visualise more than three dimen­

sions we normally select two compo­

nents to provide a suitable two 
dimensional "window" on the p dimen­

sional space. 

If, for an imaginary example, we took 

samples every few minutes throughout 

the life of a process to a point beyond 

where it normally would be stopped, we 
might find that the scores form a "track" 

across a plane defined by two compo­

nents (Figure 2). This is not surprising as 

the samples form a time series and adja­
cent samples are closely related. If the 

batch process were repeated several 
times, then we could measure the errors 

associated with "normal" operation 

throughout the process. Finally, we 

could identify a small area of the two 

dimensional space which represents an 

acceptable end point for the reaction. 

When subsequent batches are run, the 

operating conditions can be modified to 
keep the reaction" on track" , and when 

scores within the end point space are 

encountered the process can be stopped. 

When linked with feedback control sys­

tems this forms a powerful system. 

These examples show two contrasting 
ways in which principal components can 

provide a solution to basic chemometric 

problems. There are several statistical 

programs currently available for personal 
computers which provide PCA as an 

option. 
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