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Historical introduction
I first heard of “Wavelets” at the 
“Chambersburg” (International Diffuse 
Reflection) Conference in 1996. I did 
not understand it but thought it might 
be an important topic so I asked the 
lecturer to try to explain it again. He tried 
hard but I still did not get it. He said he 
would send me some papers. He did, 
but I did not understand them. Two years 
later at the next IDRC, Tom and I ran our 
“Introduction to NIR and chemometrics” 
short course (which we had been doing 
for several IDRCs) but we were also 
asked to present a one-day course on 
“Advanced Chemometrics”. We organ-
ised this by e-mail and telephone. One 
of the topics was to be data compres-
sion, I would talk about Fourier and 
Tom would cover wavelets (I still did 
not understand wavelets so I was espe-
cially looking forward to this part of the 
course). At Chambersburg, I did my bit 
on Fourier (very similar to the previous 
TD column1) and Tom began his expla-
nation of wavelets. In less than 10 
minutes, I understood! We hope you 
will also understand when you have read 
this article!—Tony Davies

Wavelets
Compared to Fourier, wavelets in their 
current form are a very recent devel-
opment, in the late 1980s. They were 
invented by the Belgian mathematician 
Ingrid Daubechies and are described in 
a paper in 1992.2

In some ways wavelets are simi-
lar to the sine and cosine waves we 
use in Fourier transformation: they 
have the same mathematical proper-
ties that allow them to be used to fit 
spectra but they are different in two 
important ways. First, wavelets are 
not smooth curves, some have quite 
jagged features, and second, they are 
locally weighted. There are an infinite 
number of possible wavelet shapes 
but because they are difficult to invent* 
there are not very many. Three of those 
invented by Daubechies, are shown in 
Figure 1, they are known by the names, 
Daubechies extremal phase, Coiflet 
and Symmlet. Each of these waveforms 
has been subjected to minor changes 
and are distinguished by a number, 
D2–D10, C2–C5 and S2–S8, shown in 
Figure 2.

Figure 1. Three examples of wavelets. 
© NIR Publications 2002. Reproduced with 
permission from Reference 7.

Figure 2. Different orders of wavelets. 
© NIR Publications 2003. Reproduced with 
permission from Reference 4.

*The majority of mathematicians prefer the word “discover” on the grounds that all mathematics is either possible (waiting to be discovered) or not 
possible (cannot be discovered or invented). This may be so but it is sometimes obvious that “invent” is the appropriate word. Interestingly, after I 
wrote this note I discovered a website containing an interview with Ingrid Daubechies in which she said that she believes that all mathematics is 
“constructed” not discovered!]
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We use a string of wavelets, as 
shown in Figure 3, in the same way 
as we use sine and cosines waves in 
FT but now each wavelet has a weight 
(or coefficient) associated with it. If 
some of these coefficients are set to 
zero the waveform would appear to 
have straight line sections. Again simi-
lar to FT we can construct a family of 
waveforms of increasing frequency. So, 
starting with one, which fills the whole 
interval being considered (i.e. a spec-
trum), known as level 0, we move 
to level 1 by doubling the number of 
wavelets, which will be half the width 
of those on the previous level. Then to 
level 2, by again doubling the number 
of wavelets and so on. When we reach 
the seventh level it will contain 128, 
very narrow wavelets. This process may 
be continued to as high a level as is 
required for our application. An indi-
vidual wavelet is specified by a level 
number and a position number. Figure 
4 shows some S8 wavelets where the 
coefficient is non-zero for one or a few 
wavelets at each level. The labelling in 

brackets gives the level number and 
position of these wavelets.

Using wavelets for 
data compression in 
spectroscopy
When we use FT for data compression, 
the FFT program has to compute a coef-
ficient for the sine and cosine waves at 
each frequency. For wavelet compres-
sion there is a similar FWT program but 
this has to compute coefficients for each 
wavelet at each level; so there is a rather 
larger file for each spectrum. Many of 
these coefficients will be very close to 
zero so there is a variable tolerance that 
can be set to make all the very small 
coefficients zero. This is where we obtain 
the data compression.

To see how this works in practice, 
Figure 5 shows the decomposition (the 
technical word for fitting a spectrum) 
of an NIR spectrum of polystyrene. The 
curves show very clearly that many coef-
ficients were almost zero and those that 
are non-zero correspond to peaks in the 
original spectrum. One of the nice things 

about wavelets is that it is so easy to see 
where the information has been found. 
The lower levels (1–4) tend to be more 
generalised, required for accurate recon-
struction of the spectrum but less inter-
esting and not shown in the figure. The 
lowest curve in the figure is the recon-
struction using all the wavelets.

Comparison of Fourier 
and wavelet compression
Between 1983 and 1988 TD and 
Professor Fred McClure3 developed an 
idea for a method of quantitative analy-
sis, CARNAC, which did not rely on regres-
sion analysis. A key part of the method 
was that it required compression of NIR 
databases and this was done by FT using 
the programs developed by McClure. 
When we became interested in wavelets 
it seemed a good idea to see if we could 
replace the compression step in CARNAC 
by wavelet compression. We found that 
we needed answers to two questions: 
“which wavelet is best for NIR spectra” 
and “are wavelets any better than FT?” 
Although some researchers had experi-

Figure 3. A waveform composed of eight S8 wavelets. © NIR Publications 2002. Derived with permission from Reference 7.

Figure 4. Some members of the family of S8 wavelets. © NIR 
Publications 1998. Reproduced with permission from T. Fearn, 
“Wavelets”, NIR news 9(5), 10 (1998), doi: 10.1255/nirn.485.

Figure 5. A wavelet decomposition of a spectrum of polystyrene using the 
D4 wavelet. © NIR Publications 2002. Reproduced with permission from 
Reference 7.

http://dx.doi.org/10.1255/nirn.485
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mented with NIR data and wavelets these 
questions had not been answered. There 
seemed to be a general belief that any 
wavelet would be better than FT!

We did a study4 using a sub-set of 
12 NIR spectra selected from a large 
database of spectra of different chemi-
cals and commodities supplied by Karl 
Norris.5 The sub-set was selected to give 
us a large variation in spectral shapes 
from smooth curves to sharp peaks 
and different mixtures of both. First, we 
tested the wavelets shown in Figure 2 
to see if there was a “best” wavelet for 
use with NIR spectra. Best was defined 
as the wavelet that required the least 
number of coefficients to achieve a given 
degree of fit. In this case we knew the 
noise level of the spectrometer, 200 μA,† 
that had been used to measure these 
samples and (as the there is no point in 
trying to fit noise) this figure was used 
as the target for the compression. The 
results were judged by computing a 
reconstruction error for a given number 
of coefficients by subtracting the origi-
nal spectrum from the reconstructions 
and calculating the root mean square 
across all wavelengths. We found that 

the best wavelets were: db3,db4,db5 
and sy3,sy4,sy5, and we choose the db4 
wavelet (which had been successfully 
used in other published work) for the 
comparison with FT. We had expected 
that the wavelet compression would be 
far more efficient than FT but this was 
not what we found. For 10 out of 12 
spectra the wavelets were more efficient 
but the improvements were modest and 
in two cases, with very smooth spectra, 
the FT was superior. These variations are 
demonstrated by Figures 6 and 7 which 
show the reconstruction errors for water 
and freeze-dried coffee.

Conclusion
Wavelet compression is an interesting 
and popular method. However, when 
considering the application of wave-
lets for a new use, it is probably worth 
confirming that there is a useful advan-
tage to be gained if compared to FT 
compression, rather than assuming that 
wavelets will always give a more effi-
cient transformation. In spectroscopy, 
when information peaks are often well 
separated by regions of flat baseline we 
would expect that wavelets would be the 
better choice but for NIR spectra this is 
not the normal case and the decision 
is borderline. However, we decided to 
proceed with the application of wave-

lets to CARNAC and were rewarded with 
modest improvements compared to the 
use of FT compression with the same 
data.6 Further details of wavelet compres-
sion can be found in our book.7
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Figure 6. Reconstruction errors from a spectrum of water (shown 
inset) using 35 pairs of Fourier coefficients (top line) or 70 D4 wavelet 
coefficients (bottom line). © NIR Publications 2002. Reproduced with 
permission from Reference 7.

Figure 7. Reconstruction errors from a spectrum of freeze-dried 
coffee (shown inset) using 35 pairs of Fourier coefficients (top line) 
or 70 D4 wavelet coefficients (bottom line). © NIR Publications 2002. 
Reproduced with permission from Reference 7.

†μA denotes micro absorbance units or log 
1/R × 10–6

http://dx.doi.org/10.1007/BF01205839
http://dx.doi.org/10.1007/BF01205839
http://dx.doi.org/10.1255/jnirs.349
http://dx.doi.org/10.1255/jnirs.712

