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An alternative title for this column could have been: “What’s in an analytical datum?” Analytical results, and with them multi-
variate chemometric models, cannot be validated in isolation; analytical results have a pedigree, a history, which influences 
the quality of determination just as much as the technicalities of the analytical method itself—in fact, often more so. The rele-
vant issue is representativity with respect to the primary target material, the lot. Analytical aliquots, or direct analytical signals, 
are the end-products of a compound “lot-to-analysis” pathway in which all preceding sampling/signal acquisition operations 
must be representative in order for analytical results (data in the chemometric world) to be valid renditions of the original 
lot material. The incurred sampling, sub-sampling, sample preparation and sample presentation errors, collectively consti-
tuting the Total Sampling Error (TSETOT), are typically 10–25+ times larger than the spectroscopic measurement errors alone 
(TAESPEC), i.e. TSETOT dominates the total measurement uncertainty budget. Focussing on analysis alone (TAESPEC) is, therefore, 
a breach of due diligence when seen from the point of view of the user of analytical results, which forms the basis for criti-
cal decision making in science, technology and industry. This column surveys the proper context for all critical steps before 
spectroscopic analysis and their impact on multivariate modelling of spectroscopic signals, irrespective of whether the TSETOT 
contributions are large, intermediate or small. All cases must be treated identically, including sensor-based solutions from the 
Process Analytical Technology (PAT) realm.

Introduction
The key issue of “sampling” is material and 
lot heterogeneity and how to counteract 
its adverse influence on sampling/signal 
acquisition, sub-sampling and sample 
preparation/presentation processes, all 
of which demonstrably take place before 
analysis. The Theory of Sampling (TOS) is 
the guiding framework for meta-analysis 
of all spectroscopic modalities. The TOS 
emphasises the Fundamental Sampling 
Principle (FSP), which states that all 
potential units from an original material 
must have an equal probability of being 
sampled in practice, and that samples 
are not altered in any way after sampling. 
Units can be particles, particle fragments 
or collections-of-units making up the prac-
tical sampling unit, termed increments. In 
the realm of quantitative spectroscopic 
analysis, compliance with the FSP is 
rather often a hidden elephant in the 
room; far from always properly acknowl-
edged. In this light, many potential pitfalls 
exist regarding analysis in the lab as well 

as in Process Analytical Technology (PAT) 
applications, which must be avoided, lest 
unnecessary Total Sampling Error (TSETOT) 
will be produced. These errors will uncon-
trollably inflate the total Sampling-and-
Measurement Uncertainty (SMU).

The present column focuses on the 
adverse influences that may crop up 
in the chemometric data modelling “on 
the other side” of production of analyti-
cal results, if the basic representativity 
demands from TOS are not heeded. The 
TOS needs only minimal presentation is 
this column.

Theory of Sampling, TOS
The FSP is the first of six Governing 
Principles (GP) and four Sampling Unit 
Operations (SUO), which must be 
honoured in order to guarantee sampling 
and analysis representativity. In previ-
ous Spectroscopy Europe columns, and 
within the chemometric and spectroscopic 
communities (the NIR realm in particular), 
the TOS has been presented extensively 

to any depth desired, as a unified, system-
atic framework for all principles and prac-
tical operations needed before analysis. 
While it is often argued that the analyst 
is only responsible for TAESPEC, someone 
else must then be responsible for control-
ling TSETOT. This is a most unfortunate 
division, however, that positively invites 
a serious sin-of-omission: who is really 
in charge of guaranteeing representativ-
ity of the analytical result, if/when most 
of the uncertainty is incurred outside the 
complacent four walls of the analytical 
laboratory? We here argue that it is better 
to view the “lot-to-analysis” pathway as 
a unified whole, as a common respon-
sibility, which includes the quantitative 
analyst (of any spectral modality) as well 
as the data analyst, whether of chemo-
metric or statistical inclination.

This column is a reasoned call for a 
holistic view of sampling, analysis and 
data modelling as an integrated whole. 
The relevant literature is numerous, and 
presents the minimum TOS competence 
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necessary to be scientifically, technically 
and managerially responsible for guaran-
teeing relevant, meaningful and reliable 
analytical results—and for multivariate cali-
bration models in all contexts, under all 
circumstances and for all types of materi-
als that can be subjected to spectroscopic 
analysis. The comprehensive core refer-
ence list is all one needs.1–8

Reference 1 is a treatise answer-
ing the question: “WHY we need the 
Theory of Sampling (TOS)”. Reference 
2 is the most recent presentation of the 
TOS, and Reference 3 is of particular 
relevance for quantitative spectroscopic 
analysis. Reference 4 is the de facto 
international standard on the general 
principles for representative sampling, 
often accompanied by Reference 5 for 
full coverage of the relationship between 
the TOS and Measurement Uncertainty 
(MU). Reference 6 introduces readers 
to the key process technology interplay 
between the TOS and PAT. Reference 7 is 
the most recent chemometric textbook, 
in which the critical pre-sampling realm 
is fully integrated, including its bearings 
on proper model validation (issues not 
covered by any other chemometric text-
book). Reference 8 is a feature on the 
first order issues related to the applica-
tion of on-line NIR to predict pharmaceu-
tical powder composition, as an example 
of a study following the holistic call. This 
column takes up this scope and will in 
particular deal with the consequences 
of TOS non-compliance for the chemo-
metric community, for which “data” are 
usually considered sacred entities—in the 
sense that nobody cares much about the 
pre-analytical realm: “Chemometricians 
analyse and model the data—basta!”

Only two TOS elements are needed for 
the present purpose:
Fundamental Sampling Principle 
(FSP): “TOS—the missing link in PAT”,6 
amplified by Reference 8, explained the 
difference between physical extraction 
of samples (representative) or speci-
mens (non-representative) relative to 
TOS-compliant spectral interaction with 
a stream of matter (representative “PAT 
process sampling”), and how this differ-
ence results from failure to comply with 
the FSP as applied to flowing streams of 
matter (all explained more fully below).

Sampling Bias: Failure to eliminate the 
complement of Incorrect Sampling Errors 
(ISE), wholly or partly, will unavoidably 
lead to a sampling bias, of unknown 
magnitude, which cannot be corrected 
for as presented in many of this column’s 
References. It will appear that within the 
PAT approach there are several major 
pitfalls if/when the pertinent TOS prin-
ciples are not heeded (or are perhaps 
unknown).

In medias res
For the purpose of chemometric multi-
variate calibration/validation/prediction, 
we are at first interested in the relation-
ship between:

	■ “From-lot-to-aliquot” (sampling + 
analysis, i.e. traditional physical 
sampling), and

	■ “From-lot-to-spectrum” (sampling via 
in- or on-line application of spectral 
analysis, PAT)

The traditional domain sampling + 
analysis needs only little comment. 
Seen from the point of view of the 
professional analy tical laboratory, 
“samples” arrive in the lab, which is 
hired to produce the requested analyt-
ical results. Preferably representa-
tive samples, of course, but it is no 
mystery why many professional labora-
tories declare that the relevance, valid-
ity, quality and representativity status of 
primary samples is solely the responsi-
bility of the client who supplies them, 
as this conveniently saves the day w.r.t. 

decisions made on the basis of the 
analytical results produced. Not surpris-
ingly, we see in many cases that results 
supplied by Quality Control (QC) labo-
ratories are understood as the absolute 
truth. And apparently with good reason, 
the analysis is representative of the 
sample delivered, but all issues about 
whether this means that it is representa-
tive of the entire lot from which it was 
extracted have disappeared. The demar-
cation between QC and production is 
never more pronounced than in this 
situation.

But it is also fair to say that such criti-
cal pre-analysis issues have begun to 
appear on the agenda, at least for some 
laboratories: “We know about the poten-
tial for gross sampling errors, that may 
very well jeopardise the objective of the 
client. Shall we tell him, or not?” There is 
(very) much more to discuss concern-
ing the complex relationship between 
client, in this case production, and labo-
ratory, and this was recently subject to an 
extensive analysis earlier in the Sampling 
Column.9,10

The in-, on-line realm (analysing 
while sampling) is of particular inter-
est to the current column. Historically 
there has been a trend within PAC 
(Process Analytical Chemistry) and PAT 
to consider installing PAT sensors into 
a pipeline as synonymous with: “No 
sampling needed—spectra are acquired 
directly”, but this is a mistake of the high-
est order! Reference 6 was the first to 

Figure	1. The fundamental sampling duality. Physical or optical 
grab sampling incur identical sampling error effects (ISE, CSE). 
Illustration copyright KHE Consulting, reproduced with permission.
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deal intensively with what is a sampling 
duality, Figure 1.

This “no sampling” fallacy optimism is 
illustrated by showing how “direct” appli-
cation of a PAT sensor does not eliminate 
the occurrence of massive ISE, Figures 
2 and 3.

It seems difficult to understand why 
this fallacy has originated, and why it 
has been propagated during at least two 
decades in the PAT realm. The strict truth 
is that only a full slice of the stream of 
matter qualifies as the proper volume/
mass support for a representative incre-
ment/signal.a

The above leads directly to a funda-
mental distinction in this context 
between:
1) A sample cell (sample: noun) and,
2) A sampling cell… (sampling: verb)

Upon reflection, it is the act of simul-
taneous sampling-and-analysis that 

distinguishes the sampling cell—and 
which in a sense may appear as making 
(physical) sampling superfluous. But this 
latter is critically dependent on repre-
sentative sampling, a proviso of over-
whelming importance. If sampling is not 
representative, all manner of unknown, 
inconstant sampling bias will still be part 
of the equation, totally destroying the 
“no sampling” claim. On the other hand, 
if/when a sampling-and-analysis cell 
complies with TOS’ demand for repre-
sentativity, conditions are right for reaping 
the powerful advantages of the PAT revo-
lution, but only then. Reference 6 treats 
these issues in detail.

A cursory survey of relevant industrial 
process technology and dedicated PAT 
literature from the last 10 years or so 
does not impress. Unwitting neglect of 
the “full slice” dictum can be found in 
abundance (but there are moments of 
satisfaction as well). The mission here is 
not to identify which are which, but only 
to direct attention to the critical need for 
a certain minimum TOS competence in 
the PAT realm.

Proper application of TOS’ relevant 
GP and SUO in the pre-analysis realm 
is a mandatory requirement in order to 
guarantee that samples, or the spectral 
acquisitions from matter streams, can 
be proven to be representative. Failure 
to live up to this demand will result in 
compromised analytical samples/signals 
with which to begin a subsequent chem-
ometric data analysis or modelling.

As a prominent contemporary exam-
ple, consider the rapidly expanding case 
of continuous manufacturing (CM) in the 
pharmaceutical industry sector. Figure 5 
shows the many locations in the CM 
pathway where NIR spectroscopic char-
acterisation finds very good use. Figure 
5 also shows where one would easily 
lose one’s way were not a modicum of 
TOS competence involved in the design, 
implementation, validation and operation 

Figure	2. The “PAT sensor application solves all sampling issues” fallacy, which follows because 
PAT sensors are not “seeing” a volume corresponding to a full cross-sectional slice of a moving 
stream of matter, see also Figure 3. Illustration copyright KHE Consulting and Martin Lischka, 
reproduced with permission.

Flow

Flow

Flow

Figure	3. Massive ISE as a result of non-compliance with TOS’ principles. This 
figure can alternatively be understood as looking down on the top of moving 
conveyor belts, or as representing a longitudinal section of a ducted flow in a 
pipeline. “TOS-correct” delineation and extraction of cross-sectional increments, 
or sliced stream volumes, are shown in grey in the top panel. All other indicated 
increments give rise to a significant sampling bias. Illustration copyright KHE 
Consulting and Martin Lischka, reproduced with permission.

aThe present column presents the strict demands for representative increment extraction/signal 
acquisition. The reader will realise that often there are severe practical difficulties involved when 
trying to comply herewith, for example that the effective NIR path length is ~30 mm while the 
effective duct diameter can be larger (much larger), say 100 mm or more? “Smartly” imple-
mented reflectance probes may go a certain way to remedy this shortfall, but are essentially 
bracketed by the same path length maximum. A bypass duct will quickly become of significant 
interest a.o. The issues raised in the present column will be addressed in the form of solutions in 
the next Columns in this series.
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phases of starting up using this manufac-
turing approach.

While it may often seem to be rela-
tively easy to obtain “direct spectral data” 
via inserted PAT sensors, as indicated in 
Figures 4 and 5 (X-data in regression), 
these are nevertheless critically depen-
dent on whether the ISE issues outlined 
above have been successfully elimi-
nated, or not. Failure to comply with 
this requirement is the by far the most 
often met with deficiency within a trig-
ger-happy chemometric community; the 

literature is full of illustrative examples, 
but we shall here refrain from identify-
ing journals, papers, authors—the task 
here is to sound a warning against 
continuing to be unaware (or to wilfully 
neglect) the critical support volume 
dictum. Fortunately, a lot of work has 
been performed by the pioneers of 
CM systems to address such sampling 
issues and the fact is that a CM system 
essentially reduces a traditional 3-D 
sampling plan (traditional approach to 
manufacturing) with a 1-D sampling 

situation. This is the optimal, TOS-correct 
understanding from which to begin to 
look for solutions to the sampling issues 
warned about.

In addition, in order to perform proper 
multivariate calibrations for one or more 
y-variables, it is necessary to extract rele-
vant, valid and representative reference 
samples (Y-data in regression). Indeed, 
this also applies for proper test set 
samples to be used for validation of the 
desired multivariate calibration models 
with which to carry out on-line prediction 
of blend uniformities (real-time compo-
sitional variation), moisture, PSD… .7 
A documented facility for representa-
tive acquisition of both sensor signals 
(X-spectra) and reference samples (refer-
ence data) must be present, or multi-
variate calibration/validation models for 
prediction will forever continue to suffer 
“impossible to reduce” prediction errors 
etc. These issues are often described in 
suspiciously murky fashions in the litera-
ture; one is tempted to interpret this as 
if authors actually do understand the 
fundamental ISE issue here, but are at 
a complete loss to come up with solu-
tions that work. In fact, “sweeping the 
problem under the carpet” has led to 
many process failure investigations and 
“incomprehensible results”, which in real-
ity is fighting fires that simply are just not 
there in the first place.

Many skills needed
This column has the purpose to intro-
duce all elements from the diverse 
disciplines of i) the TOS, ii) process engi-
neering, iii) spectroscopic analysis, iv) 
sensor technology, v) PAT and vi) chemo-
metric data analysis. All need to acknowl-
edge that analytical results pertaining to 
heterogeneous materials and systems 
have a history in which some degree of 
sampling (primary, secondary, tertiaryb) 
is always present.c For this fundamental 

Figure	4. Overview of the many possibilities for installing “sample extraction valves” and 
“PAT sensors” in traditional process industry. Note that all configurations shown here will lead 
to incorrect, i.e. biased samples or spectral signals as regards representativity because their 
support volumes do not correspond to full stream slices. Reference 6 treats these process 
sampling issues in depth w.r.t. solutions to the problems emphasised. Illustration copyright KHE 
Consulting, reproduced with permission.

Figure	5. Four process analytical locations involved in CM, based on in-line sampling-and-NIR 
spectroscopic prediction of pharmaceutical API composition, moisture, PSD and blend uniformity. 
In addition to ISE associated with incorrect support volumes, which will affect the quality of spec-
tral X-data in multivariate calibration, there is also the equally important issue of the quality of 
corresponding Y-data, for which representative reference samples must be obtained. But where 
exactly, and how, should these be extracted? This is a classical sample extraction issue, far from 
always properly acknowledged and far less satisfactorily solved, primarily because TOS continues 
to be a partly (largely) little acknowledged critical success factor in process technology, spectros-
copy and chemometrics. Illustration copyright QbD Consultancy, reproduced with permission.

bi.e. sub-sampling/splitting in several stages; 
these are bona fide sampling processes in 
their own right. 
cExceptions, for example uniform materials, 
de Beer dilutions etc. cannot establish a 
basis for solving the infinitely more complex 
issues surrounding the kind of significantly 
heterogeneous materials treated here.
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reason “What’s in an analytical datum?” 
will always include a significant comple-
ment of error effects and uncertainties 
stemming from this pre-analysis realm 
(smaller or larger, but never absent). 
The point is that this state-of-affairs must 
be acknowledged by analysts and data 
analysts; this point has been forcefully 
argued in Reference 5. It is no longer 
appropriate to pass the responsibility 
onto someone else. If PAT is going to be 
implemented successfully by an organi-
sation, all involved in quality, production, 
regulatory affairs, as well as manage-
ment, must be on the same page.

Chemometric data 
modelling
“Compromised samples or signals”—
in what sense? Compromised, because 
extraction of physical samples or acqui-
sition of spectral signals will be associ-
ated with a significant sampling bias. The 
nature of a sampling bias is that it cannot 
be corrected for by any means, data 
analytical or statistical, as distinct from an 
analytical bias, which can be subjected to 
a statistical bias-correction. This, perhaps 
surprising, distinction is treated in full in 
References 2–7.

The effect of this on chemometric 
data analysis and modelling is like the 
proverbial elephant in the room, gener-
ally unnoticed. Put simply, no manner 
of data analysis, data modelling etc. 
from the chemometric and the statisti-
cal domains will be able to correct for a 
sampling bias; see References 6 and 7 
for a full argumentat for why this is not 
possible; also see Figure 6.

What is the specific effect on multivari-
ate data analysis, modelling and calibra-
tion?

First: There will be an inflated total MU 
associated with every analytical result, 
very often significantly larger than the 
specific analytical error itself (which 
may occasionally also be significant of 
course, but only as a result of an analyti-
cal method not in proper control; such 
an issue will eventually be brought under 
control, GLP a.o.).
Second: There will always be a compo-
nent of the multivariate data errors so 
effectively screened away by the power-
ful bi-linear data modelling approaches 
in chemometrics that must be taken 
into account when appropriate. Figure 
7 shows a principal illustration of chem-
ometric decomposition of multivari-
ate data into systematic data structures 
(principal- and PLS-components) and 
decoupled multivariate data errors (es in 
chemometric parlance).

A  tac i t  unders tand ing  w i th in 
chemometrics has been that bi-linear 
errors (es) would turn out to include 
TOS-errors stemming from sampling 
deficiencies, in which case it would actu-
ally be possible to correct for ISE after all. 
Indeed, multivariate data analysis would 
then appear on the scientific scene with 
an unbelievable power, not even known 
or foreseen in the genesis and develop-
ment of chemometrics. Alas, this is not 
so!

The effect of sampling bias infla-
tion of the total sampling + analysis 
uncertainty level is such that both data 
analytical components as well as their 
complementary errors (es) are affected 
by the inconstant bias effect. Because 
TOS-errors are expressed for single varia-
bles in turn, the bias will affect each indi-
vidual variable differently. The sum-effect 
of an unresolved sampling bias is such 

that TSETOT will vary every time a new 
analytical determination is attempted on 
a new sample. This means that every 
new sample added to an already exist-
ing data matrix, think of a training data 
set, will each add its own, varying contri-
bution to the total data variance—and 
thus also to the total data set covariance. 
Thus, both components and errors will 
be affected. These issues are described 
in more detail in Reference 7.

For completion, the complement of 
Correct Sampling Errors (CSE) will also 
affect each variable individually, after 
elimination or maximal reduction of ISE.

Consequences for 
chemometrics
Because there are many influen-
tial agents involved for each sample 
extracted, or for each signal acquired by 
a PAT instrument, it may easily be an 
unhelpful simplification to understand all 
“data” as but identical realisations of vari-
ables, each with a systematic information 
content to which is added a stochastic 

Figure	6. Analytical bias (left) vs sampling bias (right). Bias effects are shown as manifested by Replication Experiments (RE).

Figure	7. Chemometric bi-linear data 
model of pervasive data structures, PCA or 
PLS-components (schematic sketch). The 

multivariate data model errors (es) are often 
optimistically thought of as “TOS-errors” 
(TSETOT + TAE), but they are not, see text for 
clarification.
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error complement. Within chemometrics 
the former can be successfully modelled 
by data analytical “components” and the 
latter can be conveniently identified, 
quantified—and then discharged, so this 
would be “all one needs to know” if data 
are always, ipso facto, representative and 
reliable. This is not so, however!

This column has argued that the 
background for each individual datum, 
and for analytical data collected as 
matrices must be appreciated in a more 
fully developed setting in which signifi-
cant parts of the traditional “measure-
ment error” also contain contributions, 
often large contributions, related to the 
specific history of each sample, aliquot 
or spectral signal support. The data 
analyst must be mindful of this intricate 
relationship, lest glib, simplistic interpre-
tations of “measurement error” will run 
a grave risk of not reflecting the more 
complex reality.

The archetypal manifestation of these 
relationships is shown in Figure 8, which 
highlights the fact that any chemomet-
ric prediction model falling short of 
sufficient performance, for example as 
evidenced by a “too high” RMSEPvalidation, 
can only be improved upon by caring 
about the TSE incurred for all data, criti-
cally based on the full understanding that 
the error complement is overwhelmingly 
made up of contributions by the TSETOT.

Thus, it is not a guaranteed success-
ful strategy to care only for the “data” as 
such, with an aim of optimal data analyti-
cal modelling systematics (chemometric 
components), perhaps acknowledging a 
minor measure of accidental analytical 
error in addition. This will, therefore, not 
include the major determinants stem-
ming from unrecognised, or deliberately 
overlooked, sampling errors and their 
incurred uncertainties. Interpretation of 
standard regression-prediction figures-
of-merit, e.g. RMSEPvalidation must be 
based on a modicum of TOS knowledge 
and competence in order to be able 
to improve on unsatisfactorily “impre-
cise” prediction performance statistics. 
In our collective experience many data 
analysts skip straight to the R2 value of a 
fitted regression line as if this was some 
form of magical truth statistic, but it only 
relates to model fitting.

Here is the most relevant criterion 
for evaluation: for an optimal bi-linear 
model, the RMSEP errors should be 
statistically comparable to the refer-
ence chemistry errors and this situa-
tion should be achieved with a relatively 
small number of model components. 
The implicit modelling of random arte-
facts in the spectral data to overcome 
material heterogeneity and non-repre-
sentative sampling only relates to the 
miniscule test volumes involved. If a 
large number of model components is 
required to achieve your error target (if 
this is even at all possible), this is only 
modelling a mirage. If a chemometric 
model cannot be brought below your a 
priori established RMSEP error threshold, 
it is telling you there is a fundamental 
problem outside of the analytical realm.

This is true information—for which no 
amount of calling for “more samples”, 
more spectra (to average), more model 
components will ever help. The unpleas-
ant situation, Figure 8, simply means 
that you must focus on improving your 
sampling practices. TOS to the fore!

Conclusions
The one sure way not to be able to 
reduce the uncer tainty elements 
behind data analytical models that 
does not comply with desired predic-
t ion per fo rmance goa ls ,  i s  the 

traditional call for more data (an 
approach very often cited in the litera-
ture and observed in practice). More 
data, meaning more samples for analy-
sis, will always display the same TSETOT 
characteristics as the samples already 
included in the contemporary training 
data set, see Reference 7. The number 
of times this futile call has been heard 
in practice is overwhelming, and is 
usually preached to those with little 
experience in the PAT/chemometrics 
fields in order to avoid the more diffi-
cult problems revealed here. Focussing 
on the root cause, i.e. why the samples 
and their analytical result do not match 
with reality is a simple sampling issue, 
however, and must be treated as such.

In fact, most of the initial efforts in 
PAT implementation and data modelling 
should be focused on improving and 
optimising sampling—way before analysis 
and data analysis. As the saying goes: “if 
the data already contain the information, 
then the chemometrics will succeed”. 
However, if the data are swamped by 
sampling noise, even applying implicit 
or explicit “correction functions” will still 
not improve the accuracy of the analyti-
cal results, because this inaccuracy can 
never be modelled away.

Chemometrics is not a black box, 
“push button” approach where the 
modelling will automatically do the rest! 

Figure	8. Theory of Sampling (TOS)—the missing link in PAT and chemometrics. Key effects 
shown here concern decoupling of TSETOT into contributions from primary sampling errors (PSE), 
secondary and tertiary sampling (SSE, TSE) and the analytical error s.s. (TAE). The lower panels 
illustrate how an unsatisfactory RMSEPVALIDATION of a multivariate prediction model manifests itself 
on a “predicted vs reference” plot. The TOS is the only approach that outlines solutions that lead 
to reduction of TSETOT.
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Automated chemometrics routines in 
software packages should be outlawed 
and never used! How dare a vendor 
provide software to replace the many 
years of competent chemometricians’ 
experience around the world by reduc-
ing our collective practice down to a 
single automated routine! And when 
this approach does not work, the same 
vendors tell their clients to collect “more 
samples” to avoid the issue at hand. 
Chemometrics is not a supermarket of 
models, but a scientific expertise area 
where all sources of variation must be 
understood such that the model is inter-
pretable and validateable.

Barring trivial, accidental TAE mishaps 
(which are always special cases, only of 
interest to themselves), the only way 
to reduce unsatisfactory (TSE + TAE) 
levels is by reducing TSETOT. Thus, the 
only way to be able reduce the “trou-
blesome”, apparently incompressible 
uncertainty contributions behind unsat-
isfactory multivariate data analytical 
models, Figure 8, is to master the neces-
sary basics of the TOS.

Chemometrians are not exempt from 
these scientific insights. There is no 
longer an excuse to hide behind “I don’t 
need to learn chemometrics, the supe-
rior software will sort it out for me”. Like 
with CGMPs for the 21st Century, we also 
need to take a 21st Century approach to 
the full sampling–analysis–data analysis 
pathway, otherwise we will be travelling 
the same merry go round, always chas-
ing our own tail and never progressing.

The promise
We shall address the many issues 
pointed to in this column from the point 
of view of solutions in the next columns 
in this series.
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