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Previous columns have been devoted 
to a comprehensive introduction to the 
basic principles, methods and equipment 
for sampling of stationary materials 
and lots, as part of a description of the 
systematics of the Theory of Sampling 
(TOS). The next instalment of columns 
will deal with process sampling, i.e. 
sampling from moving streams of 
matter. As will become clear there is a 
great deal of redundancy regarding how 
to sample both stationary and moving 
lots, but it is the specific issues pertaining 
to dynamic lots that will be highlighted.

Lot dimensionality: ease 
of practical sampling
The Theory of Sampling (TOS) has found 
it useful to classify lot geometry into four 
categories. The strict scientific definitions 
are not necessary at the introductory 
level in these columns, which will rather 
focus on lot dimensionality from the 
point of view of sampling efficiency (or 
sampling possibility, in difficult cases). A 
straightforward lot dimensionality classi-
fication is seen is Figure 1.

From a practical point of view, sampling 
needs to be concerned with the ease 
with which one is able to extract incre-
ments from a randomly chosen loca-
tion in the lot (or selected according to a 
sampling plan). Thus it is relatively easy 
to extract slices of any lot which has one 
dimension which dominates, i.e. is vastly 
longer (the extension dimension) than 
any of the other two dimensions (width, 
height). From this sampling point of view, 
the lot is effectively only 1-dimensional 
because all material in an incremental 
slice “covers” completely the full width 
and height of the material. This is the 
reason for TOS’ classification of 1-dimen-

sional lots, or 1-D bodies. 1-D lots have a 
special status in TOS, for various reasons 
(see further below). Observe that a 1-D 
lot can either be a stationary, very elon-
gated body (stock, pile etc.) or it can be 
a dynamic 1-D lot, i.e. a moving or flow-
ing stream of matter (the material being 
transported by a conveyor belt is an 
archetypal dynamic 1-D lot; likewise the 
moving matter confined to a pipeline). 
It is a very important issue that 1-D lot 
sampling increments have the form of a 
“slice”.

It is equally easy to define a 2-D body 
(see Figure 1). 2-dimensional lots are 
characterised by the fact that all incre-
ments will only “cover” one dimension. 
Very often 2-D lots are horizontal, with 
the remaining dimension vertical (think 

of a drill core penetrating a geological 
formation, or a layer), but not necessar-
ily in this orientation. The defining issue 
is that there is only one degree of free-
dom, namely where in the X–Y plane 
is the 1-dimensional increment to be 
located “where to sample in the X–Y 
plane?”). The operative increments in 
sampling 2-D lots are either “cylindrical 
increments” or box-like, see Figure 1.

The key feature for the sampler, or for 
the sampling equipment, is that there is 
full access to the entire lot in the case 
of 1-D and 2-D lots. This is an impor-
tant empowerment because it allows the 
demands of the fundamental sampling 
principle (FSP) to be honoured: all 
potential increments from a lot must 
be accessible for physical extraction if/

Lot Dimensionality (definition via increments)

Increments do not fully cover 
any of the lot dimensions

Increments cover one lot 
dimension (e.g. a drill-core)

Increments cover two lot 
dimensions (e.g. a “slice”)

No correlation exists between 
increments . Increments can be 
picked at will. Total access to 
entire lot volume in practice

Figure 1. TOS’ practically oriented classification of lot dimensionality; the odd “0-dimensional lot” 
type is explained fully in the text. Illustration credit: Lars Petersen Julius (with permission).
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when selected. Indeed, this feature 
is scale-invariant, one can sample all 
1,2-dimensional lots of any size under 
the FSP. Going on to 3-D lots leads to a 
perplexing revelation. It is very difficult to 
define a 3-D lot from the point of view of 
practical sampling, logically the operative 
increment form here should be a sphere. 
But in our 3-D world, extracting spheri-
cal increments is not exactly easy… … 
Be this as it may, TOS has many alterna-
tives to offer for 3-D sampling, but this 
is outside the present scope (see, for 
example, Reference 1).

WHAT then is a “0-dimensional lot”, 
the top illustration in Figure 1? This is 
another of TOS’ penetrating ways to 
focus on the underlying systematics of 
sampling. A 0-D lot is a lot that is “small” 
enough so that it is particularly easy 
always, under all circumstances, with all 
kinds of equipment to extract any size 
increment desired (increments of any 
form, so long as the increments are all 
congruent, i.e. of the exact same form 
and size). In other words, a 0-D lot is a 
particularly easy-to-sample lot. Obviously 
there is a grading demarcation between 
a 0-D lot and a 3-D lot, but in prac-
tice this discrimination has been found 

immensely useful. It is full accessibility in 
sampling practice that is the key opera-
tive element in these definitions.

Thus, with respect to sampling prac-
tice, lots come in groups [0-, 3-D lots] 
vs [1-, 2-D lots] of which the latter are of 
overwhelming importance—because this 
allows practical sampling no longer to 
be concerned with the size, magnitude, 
volume, mass of the lot. All [1-, 2-D lots] 
can be sampled appropriately, and this is 
a very large first step towards universal 
representativity.

Lot dimensionality 
transformation
This is a most advantageous feature of 
1-D lot configurations. Irrespective of 
whether a 1-D lot is stationary or moving, 
it is 100% guaranteed that the entire lot 
will be available for increment extrac-
tion. 1-D lots are always particularly 
easy to sample, irrespective of their orig-
inal configuration—it could have been a 
3-D, 2-D or a 0-D lot that was decided 
to be transformed into a 1-D configura-
tion… much more of this aspect below. 
From the largest lot sizes involved, e.g. a 
very big ship’s cargo (100,000 tonnes for 
example) down to an elongated pile of 

powder in the laboratory; when present 
in a 1-D configuration, slicing off the 
number of increments, Q, decided upon† 
constitutes the most effective sampling 
condition known from TOS’ analysis. 
This scenario is the most desirable of all 
sampling options.

This finding has led to one of the six 
governing principles in TOS, lot dimen-
sionality transformation (LDT). Wherever, 
whenever possible, it is an absolute 
advantage to physically transform a lot 
(0-D, 2-D, 3-D) into the 1-D configura-
tion. Figure 3 illustrates this governing 
principle.

Even if there will have to be some 
work involved (sometimes a lot of work) 
in moving, transporting (bit-by-bit) a lot, 
say a 3-D lot, and for example loading its 
content onto a conveyor belt, this is very 
often a welcome expenditure because of 
the enormous bonus(es) now available. 
There is no comparison because of the 
ease with which the gamut of sampling 
errors can be eliminated or reduced 
with the 1-D configuration. TOS’ litera-
ture is full of examples, demonstrations 
and case histories on this key issue, e.g. 
Reference 1 and literature cited herein.

The subsequent set of sampling 
columns will describe the full diversity of 
process sampling, but this is a first foray 
to give the reader a useful overview of 
what is to come.

Process sampling
Process sampling concerns 1-D lots 
where there is a distinct spatial (station-
ary lots) or temporal order between 
the lot units along this defining dimen-
sion. The units may appear either as 
an ordered series of discrete units (in 
time or space) or as a moving/flow-
ing material stream. All such elongated 
or moving material bodies are, strictly 
speaking, three-dimensional objects, 
but by transformation into 1-D objects 
their sampling turns out to be identical 
in principle as well as in practice. The 
movement involved is relative: either 
the matter streams, or flows, past the 

Random selection of slices (increments) 
along the extension dimension of a 1-D lot

Figure 2. There should always be an element of randomness in a good sampling procedure, 
here the locations along the extension dimension of a 1-D lot are selected in this fashion. All 
slices correspond to complete slices of the width–height dimensions of the lot. Illustration credit: 
KHE.

†How to set an appropriate number of incre-
ments, Q, is an integral part of sampling of 
1-D lots, and will be explained in details in 
future columns.
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sampler/sampling equipment, or the 
sampler “walks up and down” along the 
extended dimension of the lot. From 
a sampling point of view, these two 
situations are identical and will there-
fore both be covered even through 
the terminology most often speaks of 
process sampling.

It is now time to focus on the nature of 
the lot material to be sampled. In process 
sampling, the 1-D lot can be classified in 
three broad categories:

 ■ A moving or stationary stream of 
particulate material . Examples: 
conveyor belts transporting aggre-
gate materials, powders, slurries in 
ducts etc.

 ■ A moving or stationary fluid flow (i.e. 
gasses, liquids). Examples: rivers or 
produced/manufactured fluids in 
pipelines.

 ■ A moving or stationary stream made 
of discrete units. Examples: railroad 
cars, truck loads, or “units” (bags, 
drums, packages...) from a produc-
tion or a manufacturing line.

Besides the distributional and constitu-
tional heterogeneity (explained in earlier 
columns), there are further aspects that 
need to be considered to characterise 
the heterogeneity of 1-dimensional lots. 
This especially involves understanding 
the nature of the non-random hetero-
geneity fluctuations along the elongated 
lot. Interest is no longer so much in the 
heterogeneity within the units of obser-

vation (because the full slice will be 
extracted and its heterogeneity is there-
fore now only a matter for the subse-
quent mass-reduction step(s) which is 
easily managed under TOS), but specifi-
cally in the heterogeneity related to the 
differences between them. This is the lot 
heterogeneity along the entire length of 
the 1-D lot (which actually is the entire 
volume of the original lot).

Often “slicing” in such a case amounts 
to nothing more than appropriate selec-
tion of units viewed as a basis for a time 
series of analytical results. But the 1-D 
lot can also manifest itself as a more or 
less continuous body (1-, 2-, 3-phase 
continuum) along the length dimension, 
in which case it is the sampler/sampling 
equipment that forcefully “cuts” the 
stream to produce the extracted units. 
The location of where, and how, to cut 
the stream of matter is of critical impor-
tance in process sampling.

The heterogeneity contr ibution 
from an extracted unit (increment) is 
composed of three (four if including the 
total analytical error (TAE) parts in the 
case of 1-D processes:

 ■ A random, discontinuous, short 
range fluctuation term. This term 
describes the constitutional hetero-
geneity within the increment.

 ■ A non-random, continuous, long-
range fluctuation that describes trend 
in the process/lot (between units) 
over time/distance.

 ■ A non-random, continuous, cyclic 
term, describing cyclic or periodic 
behaviour of the process/lot.

 ■ A random fluctuation term, taking 
into account all errors stemming 
from extraction, weighing, process-
ing and analysis. This can be viewed 
as the extended TAE. Sometimes it is 
desired to keep the strict analytical 
errors isolated, as TAE proper. Either 
way, no confusion need arise and 
various cases will be illustrated in the 
following columns.

1-D lot heterogeneity
Characterisation of the heterogeneity of a 
1-D lot must include information on the 
chronological order of the units extracted 
and their in-between correlations. Upon 
reflection, it is clear that it will be of inter-
est to be able to characterise the intrinsic 
heterogeneity of the 1-D lot at all scales 
from the increment dimensions itself 
(there can be no resolution of the 1-D 
heterogeneity smaller than the physical 
dimension of the increment in the exten-
sion direction, which below is defined as 
the lag) … up to, say half the length of 
the entire 1-D body (corresponding to 
the, in practice, unlikely case in which 
the lot was sampled as but two very 
large samples, each of the magnitude 
of half the lot; this scale is of no practi-
cal interest in the overwhelming number 
of meso- and macroscopic cases, but is 
occasionally brought to bear on excep-
tionally small lots). It is actually neces-
sary to be able to express the 1-D lot 
heterogeneity at all these scales simulta-
neously. This may appear as a complex 
task, but TOS has developed an amaz-
ing, and amazingly easy to derive, facility 
for exactly this purpose—the variogram.

Variographic analysis: a 
first brief
In order to characterise the autocorre-
lation between units of the process/lot, 
the variogram is very powerful. It allows 
understanding the variation observed 
between extracted increments as a 
function of the distance between them 
(in time or space). The smallest equi-
distance between increments to be 
extracted is called the “lag”. This lag is 
determined by the sampler when setting 

LDT: Lot Dimensionality 
Transformation

Figure 3. In practical sampling, TOS has shown the absolute desirability of transforming 3-D, 2-D 
and sometimes even 0-D lots into a 1-D configuration. Illustration credit: KHE.
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up the basis for a variographic charac-
terisation (the variographic data analyst) 
if there has been made no variogram 
earlier. In certain cases valuable informa-
tion from an earlier attempt will allow an 
optimal lag to be fixed; more on setting 
the critical parameter lag later. In addi-
tion, a variogram also yields information 
in the forms of the so-called “nugget 
effect”, the “sill” and the “range”, which 
are outlined below.

A variogram is based on the analyti-
cal results from a series of extracted 
increments, which are all mass-reduced 
and analysed in a proper TOS-correct 
manner—this is so as to suppress as 
much as possible sampling, mass-reduc-
tion and analytical errors, in complete 
agreement with the objectives regarding 
stationary lots. All extracted increments 
are in a sense treated as individual 
samples in the variographic context 
(but their status as grab samples is not 
a cause for worry, as shall be clear—
because we have access to a lot of them 
covering the entire lot).

A variogram can be calculated based 
on a series of analytical results from a 
sufficient number of increments span-
ning the entire process interval of inter-
est. An example could be a production 
process over a 24-h period, sampled 
every 20 min to characterise the vari-
ation, including three 8 h shifts. This 
would total 72 analytical results. More 
on how to fix an appropriate number of 
data from which to calculate variograms 
will be covered in later columns. Here, 
it is sufficient to state a beginner’s rule-
of-thumb: no less than 60 data points 
(analytical results). Often also much 
shorter time-spans are investigated, for 
instance, during the filling of a number 
of bags from a batch (blending) process, 
or something much longer, like daily or 
seasonal variation, for periods up to an 
entire year or even more. In general, the 
variogram is supposed to characterise a 
salient “process interval of interest”; this 
is very much an interval that is intimately 
related to the specific process in ques-
tion, but the common feature is that 
the process is “covered” with at least 60 
increments.

The fundamental operative unit used 
in the variogram calculation is the lag 

parameter, j, describing the distance 
between two extracted units. Often the 
lag is expressed as a dimension-less, 
relative lag by only relating to a series of 
multipla of the basic minimum lag unit 
(more specifics later).

Below this column ends with an exam-
ple of how to interpret a variogram; which 
is only meant to give an impression of 
the surprising wealth of information that 
can be gathered from a variographic anal-
ysis. Much more to come…

Interpretation of 
variograms
The practical interpretation of variograms 
is the most important step in a vario-
graphic analysis. The variogram level 
and form provide extensive information 
on the process variation captured (the 
systematics of the process heterogeneity 
captured). Normally, three primary types 
of variograms are encountered (based on 
TOS’ ~60 years of very wide experience):

 ■ The increasing variogram (normal 
variogram shape).

 ■ The flat variogram (no autocorrela-
tion along the defining dimension).

 ■ The periodic variogram (which is a 
superposition on either of the first 
two types).

These variograms are outlined in 
Figure 4. When the variogram type has 

been identified, information on further 
optimisation of routine 1-D sampling can 
be derived (and there are many other 
types of information that can be gained 
from variograms…). The increasing vari-
ogram (Figure 4, left top variogram) can 
be used as an example.

Variograms are not defined for lag 
j = 0, as this would correspond to extract-
ing the exact same material increment 
twice. Even though this is not physi-
cally possible, it is still highly valuable to 
acquire information as to the expected 
variation corresponding to if it would 
have been possible to repeat sampling 
of the exact same increment. TOS iden-
tifies this variation as the so-called 
“nugget effect” (also termed the “mini-
mum possible error”, MPE). Normally, 
the first five points of the variogram 
are extrapolated backwards to intercept 
the ordinate axis to provide an estimate 
of the magnitude of the nugget effect, 
but there are also much more tractable 
model curve-fitting operators available; 
these are the preferential choice within 
geostatistics). Either way it is the esti-
mate of the Y-axis intercept that carries 
a wealth of surprising information. There 
is a reason for the name “MPE” (mini-
mum possible error). The nugget effect/
MPE includes all error types that will 
be influential for sampling systems not 

Figure 4. Three basic variogram types. Reproduced with permission from L. Petersen and K.H. 
Esbensen, “Representative process sampling for reliable data analysis—a tutorial”, J. Chemometr. 
19, 625–647 (2005).2
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sufficiently TOS-optimised, e.g. producing 
significant correct sampling errors (FSE, 
GSE), incorrect sampling errors as well 
as the TAE, all contributing to an elevated, 
unnecessarily inflated nugget effect. 
MPE is therefore an appropriate meas-
ure of the absolute minimum error that 
can be expected in practice using the full 
complement of sampling error elimina-
tion and reduction measures available in 
TOS. This turns out absolutely not to be 
the rule within very many process indus-
try sectors—because of a desire to keep 
the costs of sampling systems as low 
as possible (which is very often too low 
for comfort, or rather, to put it precisely, 
too low to render representativity; much, 
much more on this aspect in many forth-
coming columns).

Figure 5 shows a generic increasing 
variogram, delineating the three basic 
variogram parameters, nugget effect, 
range and sill, which is all that is needed 
to characterise any variogram.

When the increasing variogram 
becomes more or less flat after a certain 
multiplum of unit lags (X-axis), the “sill” 
of the variogram has been reached. The 
sill provides information on the expected 
maximum sampling variation if the exist-
ing autocorrelation is not taken into 
account. The “range” of the variogram 
is found as the lag beyond which there 
is no autocorrelation. N.B. the “dip” of 
a smoothed version of the variogram 
signifies an increase of within-unit auto-
correlation as the lag becomes smaller 
and smaller (classical definition of time-

series autocorrelation). TOS process 
sampling is extremely interested in what 
takes place with the range, i.e. in what 
characterises pairs of increments with a 
smaller between-unit distance than the 
range, to be more fully developed in later 
columns.

If a significant periodicity is observed 
(e.g. Figure 4, lower variogram), the 
sampling frequency must never be 
similar, since this risks introducing an 
additional error, an in-phase error). In 
these cases the specific sampling mode 
(random sampling, systematic sampling 

and strat i f ied random sampling) 
becomes critically important, which is 
also explained in a practical application 
example later.

A complete introduction to variographic 
characterisation and process sampling is 
no small matter, and the present initia-
tion will be complemented by a substan-
tial instalment of more columns.

To whet the reader’s appetite, Figure 6.
And for the avid and impatient reader, 

a recent, complete introduction to vari-
ographics can be found in Reference 4.
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Figure 5. Generic increasing variogram, schematically defining the nugget effect, the sill and the 
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Figure 6. Manual increment extraction from a conveyor belt defining a dynamic 1-D lot. The 
scoop used to extract increments is less than half the width of the conveyor belt, imparting signif-
icant incorrect sampling error effects to the process sampling. This results in an (unnecessarily) 
inflated nugget effect, which is one of the means by which variographic process characterisation 
can also be used for total sampling-plus-analysis system evaluation, see, e.g., References 1 and 3. 
Photo credit: KHE
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