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Introduction
The chemistry at surfaces and inter-
faces is of major importance to the 
correct operation of many high-inno-
vation products including drug delivery 
systems, medical devices, organic elec-
tronic displays and personal care prod-
ucts. Secondary ion mass spectrometry 
(SIMS) has become a successful and 
popular technique to study such materi-
als owing to its high chemical specificity, 
ppm surface sensitivity and the abil-
ity to image with spatial resolutions of 
hundreds of nanometres.1 More recently, 
the ability to molecularly image many 
organic materials in 3D with depth reso-
lutions up to 5 nm has become possi-
ble. This measurement breakthrough 
allows complex structures such as a 
pixel from an organic light emitting diode 
to be characterised in exquisite detail. 
However, a complication and barrier 
to wider uptake of SIMS, especially for 
organic materials, is the complexity of 
the mass spectrum. To help analysts, 
the G-SIMS2 method (from gentle-SIMS) 
was developed to simplify the spectra 
and provide direct interpretation based 
on the physics and chemistry of the SIMS 
process rather than on statistical analysis 
techniques such as principal component 

analysis (PCA) or library matching meth-
ods. This has led to a family of methods 
with the “G” prefix, which coincidently 
started at around the same time as that 
other popular family of products manu-
factured by Apple®. This article provides 
a short introduction to the G-family.

G-SIMS
It is first necessary to outline the essential 
processes in SIMS. Primary ions with typi-
cally tens of keV energy impact a surface 
depositing that energy over a few tens 
of nanometres depth causing an ener-
getic collisional process, which depends 
on the primary ion energy, number of 
atoms in the ion, their atomic number 
and the properties of the sample. 
Secondary ions are liberated from the 
surface which, for an organic substance, 
are predominantly heavily fragmented 
or structurally re-arranged.1 In the early 
development of SIMS for organic mate-
rials, libraries of spectra were devel-
oped for “fingerprint” matching. These 
have now grown to cover approximately 
a thousand substances. A recent anal-
ysis of the PubChem substance data-
base (see http://www.ncbi.nlm.nih.gov/
pccompound) shows that there are over 
70 million substances in the mass range 
relevant to SIMS. Consequently, experi-
mental libraries will always be useful but 
contain a very limited subset of materials. 
Figure 1 illustrates the issue with a mass 

spectrum of an industrial antioxidant, 
Irganox 1010, a phenolic antioxidant used 
in the polymer industry, deposited onto 
a silver substrate. It is clear that there are 
many peaks and by progressively zoom-
ing in on smaller and smaller regions we 
see the complexity of the spectrum.

A schematic of the SIMS process is 
shown in Figure 2 for a surface covered 
with folic acid molecules analysed with 
a beam of 25 keV Bi+ ions. The impact 
of a single Bi+ ion is illustrated (in real-
ity, approximately a million ions per 
second are fired) with the emission of 
secondary ions from the surface. At the 
point of impact there is a high energy 
density (coloured red) and the emit-
ted secondary ions are heavily frag-
mented components of the folic acid 
molecule. Rearrangements to more 
stable structures also occur; these are 
often ubiquitous ions offering no diag-
nostic ability. The energy density a few 
nanometres from the point of impact is 
lower, so more intact fragments are emit-
ted. Intermediate fragments are emitted 
between these zones. In SIMS, the mass 
spectrum is the sum of all these second-
ary ions, which is, unfortunately, domi-
nated by the fragment ions making the 
spectrum complex and difficult to inter-
pret, as was shown in Figure 1.

For a given energetic condition of 
the primary ion beam (particle atomic 
number and energy) there will be a 
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characteristic population of intact and 
fragmented secondary ion fragments. 
At less energetic conditions, the rela-
tive population of the more intact frag-
ments is expected to increase and vice 
versa. This behaviour was found experi-
mentally and a description developed2 
in terms of a population of fragments 
described by a partition function with 
a characteristic surface temperature, 
Tp. The G-SIMS theory2 shows that for 
two spectra with peak intensities S1x 

and S2x at mass Mx acquired with differ-
ent ion beam conditions and conse-
quently different surface temperatures, 

T1 and T2 (where T1 < T2), that it is possi-
ble to extrapolate to a new spectrum 
at a much lower temperature. This, 
the G-SIMS spectrum, Gx, is simply 
computed as

 1
1

2

g
x

x x x
x

S
G M S

S

æ ö÷ç ÷= ç ÷ç ÷çè ø
 (1)

where g is an extrapolation index, known 
as the g-index. Typically, this has a value 
of 13 and ranges from –1 (i.e. the G-SIMS 
spectrum is effectively the high fragmen-
tation spectrum) up to 40 (equivalent to 
a spectrum with very low fragmentation 
conditions). At a g-value of 0 the G-SIMS 
spectrum is effectively that of the low 
fragmentation condition. The mass term, 
Mx, simply scales up the intensity at 
higher masses where the secondary ion 
yields in the SIMS process are weaker. In 
the G-SIMS spectrum, the most structur-
ally significant ions are clearly prominent 
and the degraded and rearranged frag-
ment ions are suppressed.

In practice then, G-SIMS requires two 
spectra to be acquired, S1x and S2x, with 
low and high fragmentation ion beam 
conditions, respectively. It was found 
originally that a stronger difference in 
these fragmentation conditions could 
be achieved if two different primary ion 
masses were used rather than different 
energies. At that time, caesium primary 

Figure 1. The positive-ion SIMS spectrum of a surface layer of Irganox 1010 molecules on silver 
(inset) illustrating the complexity of the mass spectrum. Note, for clarity, the inset only shows one 
molecule on the surface whereas the spectrum is for a monolayer of molecules.

Figure 2. Schematic illustration of the SIMS 
process for one impact event on a surface 
covered with folic acid molecules.

Figure 3. The positive-ion G-SIMS spectrum of Irganox 1010 using 10 keV caesium and argon 
ions for the S1x and S2x spectra, respectively. The molecular structure of Irganox 1010 is shown 
inset and is labelled “M” in the peak assignment. The sub-structure C(CH3)3 is labelled “But”.
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ions for S1x and argon ions for S2x were 
a popular choice. Figure 3 shows the 
G-SIMS spectrum for the same Irganox 
1010 material for comparison with the 
SIMS spectrum shown earlier. It is very 
clear that the G-SIMS spectrum is much 
easier to interpret with peaks clearly 
related to the molecular structure shown 
in the inset. G-SIMS has now been 
successfully applied to a wide variety of 
pure substances including polymers and 
complex molecules.

A barrier for the wider uptake of 
G-SIMS into the surface analysis commu-

nity was the requirement for two ion 
beams producing suitably different frag-
mentation conditions and the need for 
their spatial registration (spatial align-
ment) at the surface, which is especially 
important for heterogeneous samples. 
The most popular primary ion source 
is the liquid metal ion source, which is 
now sold with almost every new time-
of-flight SIMS (ToF-SIMS) instrument. 
Recently, a novel bismuth–manganese 
emitter3 known as the “G-tip” has been 
developed as a popular liquid metal ion 
source. This simplifies the alignment 

and gives excellent G-SIMS imaging 
and spectroscopy without significantly 
compromising the bismuth cluster ion 
beam performance. G-SIMS has now 
become accessible to many analysts, 
and the software to compute G-SIMS 
spectra has been incorporated directly 
into some vendor’s software. With the 
G-tip, the S1x and S2x spectra are acquired 
with Bi and Mn ions, sequentially. This 
is achieved simply by computer control 
without any special alignment or opti-
misation. Indeed, in future, it may be 
possible to generate G-SIMS spectra by 
acquiring data using a repeating pattern 
of pulses of Bi ions followed by pulses 
of Mn ions. Serendipitously, in an anal-
ysis of the characteristics of monatomic 
primary ion sources to generate G-SIMS 
spectra it was found that Bi and Mn give 
the biggest difference in fragmentation in 
the S1x and S2x spectra giving optimum 
G-SIMS conditions.

Separating mixtures—the 
g-ogram
As discussed earlier, a great advan-
tage of SIMS is that the analysis is 
direct and has excellent spatial resolu-
tion approaching a few hundred nano-
metres. However, the lack of the usual 
capability of using separation methods 
in mass spectrometry, such as chroma-
tography or ion mobility, combined with 
the complexity of the heavily fragmented 
ions in the spectra means that the inter-
pretation of multi-component spectra 
in SIMS is very challenging indeed. The 
requirements for high-definition imag-
ing, with say 256 × 256 pixels, in around 
10 minutes analysis time places signif-
icant constraints on the instrument 
design so that separation using methods 
such as ion mobility with flight times of 
milliseconds are incompatible. Clearly, 
traditional liquid and gas chromatogra-
phies are not at all possible.

In Equation (1), the g-index allows the 
amount of fragmentation in the G-SIMS 
spectrum, with a value of –1 giving 
essentially the S2x spectrum, a value of 
0 yielding the S1x spectrum, and a high 
value of 40 giving a spectrum with very 
low fragmentation. If different substances 
require characteristic fragmentation ener-
gies then the g-index is, in effect, a 
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separation parameter. This concept was 
developed by Ogaki et al.4 who showed 
that it may be used to “chromatographi-
cally” separate the mass spectrum of a 
drug molecule from a polymer matrix 
using the so-called g-ogram.4 This is a 
significant advance since most tech-
nologically important samples are not, 
of course, pure components but are 
complex mixtures often with impurities 
and other contaminants.

The g-ogram is an intensity map of 
the G-SIMS intensities normalised to 
the maximum intensity at each value of 
g from –1 (high fragmentation) to 40 
(very low fragmentation) in increments 
of 0.1 for each mass, Mx. Effectively, 
this is like a traditional chromatogram 
with the separation parameter, g , 
related to the fragmentation energet-
ics of the ion formation. For each mass 
peak, Mx, there are vertical streaks of 

intensity. Those that are bright to begin 
with and fade away as g increases 
(down the image) are from processes 
that involve more energy and fragmen-
tation. Conversely, those peaks that are 
dark initially and then become bright 
at higher g values are from processes 

requiring less energy and fragmenta-
tion.

Recently, the g-ogram method has 
been applied by Aoyagi et al.5 to a 
sample consisting of a silicon wafer 
substrate coated with the protein 
lysozyme and possibly one or more 
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of the well-known contaminant polydimethysiloxane (PDMS). This has the convenient 

advantage that the G-SIMS spectrum, shown later, filters out the PDMS contamination.  

 

The spectrum (green) for the intermediate condition 1.7 ≤ gmax < 3.4 reveals a peak at 182.18 

Da which is interpreted to be a dicyclohexylammonium salt or similar contamination. This 

was unexpected and is believed to come from cross-contamination in the sample preparation 

procedure. This spectrum also contains one peak at 130.07 Da from C9H8N+ relating to 

tryptophan (W) or possibly from the dicyclohexylammonium salt.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4 Application of G-SIMS and g-ogram to a complex sample consisting of 
lysozyme on silicon wafer with contaminations (a) positive ion SIMS spectrum using 25 keV 
Bi+ primary ions. The peaks are coloured red, green and blue for the conditions of -1 ≤ gmax < 
1.7, 1.7 ≤ gmax < 3.4 and 3.4 ≤ gmax < 40 and are separated in (b), (c) and (d) respectively as 
discussed in the text.  
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Figure 4. Application of G-SIMS and g-ogram to a complex sample consisting of lysozyme on silicon wafer with contaminations (a) positive-ion 
SIMS spectrum using 25 keV Bi+ primary ions. The peaks are coloured red, green and blue for the conditions of –1 ≤ gmax < 1.7, 1.7 ≤ gmax < 3.4 and 
3.4 ≤ gmax < 40 and are separated in (b), (c) and (d), respectively, as discussed in the text.
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Figure 5. g-ogram of lysozyme on silicon wafer using 25 keV Bi+ and Mn primary ions for the S1x 
and S2x spectra, respectively. The horizontal line at g = 3.4 marks the boundary between substrate 
and contamination peaks above and protein peaks below.
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contaminations from processing. The 
positive-ion SIMS spectrum using Bi+ 
primary ions (S1x) is shown in Figure 4. 
The peaks are displayed in three colours 
which we explain later. The spectrum is 
complex and consists of ions from the 
substrate, the contaminants and the 
protein. Resolving the constituents by 
multivariate analysis methods would 
require analysing many samples that 
would, in many cases, simply not be 
available. The corresponding g-ogram 
is shown in Figure 5 calculated from 
the S1x spectrum acquired with Bi+ 
and the S2x spectrum acquired with 
Mn+. A horizontal line may be moved 
up or down with its position set at a 
value gsep. For each peak, Mx, there is 
a g-value where its intensity is a maxi-
mum, known as gmax. It is easy to iden-
tify which peaks have gmax < gsep and 
which peaks have gmax ³ gsep. It is 
clear from Figure 5 that there are two 
bands of peaks that may be sepa-
rated by a horizontal line at gsep = 3.4. 
Further inspection of the g-ogram by 
adjusting the horizontal line revealed 
a possible third separation at gsep = 1.7 
and the computer program allows the 
three bands to be selected and the 
mass peaks coloured. In Figure 4, the 
peaks are coloured red, green and blue 
for the conditions of –1 ≤ gmax < 1.7, 
1.7 ≤ gmax < 3.4 and 3.4 ≤ gmax < 40, 
respectively, and the spectra for each of 
the three components are also plotted 
separately as Figures 4 (b), (c) and (d). 
The spectrum (red) in Figure 4 with 
–1 ≤ gmax < 1.7 consists of peaks from 
the substrate and also the characteristic 
fragments of the well-known contami-
nant polydimethysiloxane (PDMS). This 
has the convenient advantage that the 
G-SIMS spectrum, shown later, filters 
out the PDMS contamination.

The spectrum (green) for the interme-
diate condition 1.7 ≤ gmax < 3.4 reveals a 
peak at 182.18 Da which is interpreted to 
be a dicyclohexylammonium salt or simi-
lar contamination. This was unexpected 
and is believed to come from cross-
contamination in the sample preparation 
procedure. This spectrum also contains 
one peak at 130.07 Da from C9H8N

+ 
relating to tryptophan (W) or possibly 
from the dicyclohexylammonium salt.

The third spectrum (blue) for 
3.4 ≤ gmax < 40 consists of all the 
expected peaks for the amino acids in 
lysozyme. In effect, without any prior 
knowledge of the sample or pre-select-
ing ions, the g-ogram method has sepa-
rated the spectrum shown in Figure 
4(a) into the three critical components; 
the substrate and PDMS contamina-
tion (red), an unexpected contaminant 
which is interpreted to be dicyclohexy-
lammonium or similar along with one 
peak relating to tryptophan (green), and 
all the peaks expected from the litera-
ture for the amino acids in lysozyme 
(blue). Examining Figure 4(a) again, 
now with the colours identified, reveals 
how complex the spectrum is with peaks 
from the different components mixed 
together. Note that multivariate meth-
ods such as PCA, if a suitable data set 
were available, would struggle to sepa-
rate out the protein-related peaks since 
they are, on average, a factor of ten or 
more weaker than other secondary ions.

G-SIMS and informatics 
for substance 
identification
So far, the G-SIMS and g-ogram meth-
ods have simplified the mass spec-
tra to retain only structurally significant 
ions and also separate out components 
from a mixture based on the fragmenta-
tion energy for each component. This is, 
of course, a major boost for the analyst 
faced with an unknown material. The 
next step forward is to be able, automat-
ically or semi-automatically, to identify 
substances using informatics methods. 
As previously discussed, the mass spec-
trometers used for SIMS do not have the 
high mass accuracy or MS/MS capabil-
ity (a method to break the molecule 
down to smaller components) common 
in high-performance mass spectrom-
eters used for substance identification. 
Automatic identification is consequently 
something of a challenge. However, two 
promising approaches have been devel-
oped to help guide analysts based on 
G-SIMS spectra which have some simi-
larities with MS/MS spectra. We briefly 
outline these in the following. First, a 
method was developed for simulating 
fragmentation pathways6 based on the 

popular simplified molecular-input line-
entry specification (SMILES) molecular 
structure format. A computer program 
developed at NPL (National Physical 
Laboratory, UK) simulates the fragmen-
tation pathways by recursively breaking 
all bonds except bonds to hydrogen and 
aromatic rings. The simulated fragmen-
tation pathways were then compared 
with experimental fragmentation path-
ways that may be identified by vary-
ing the g-index parameter. For Irganox 
1010, folic acid, valine, tyrosine and a 
simple peptide, valine–tyrosine–valine, 
it was found that approximately 90% 
of the G-SIMS fragmentation pathways 
could be explained. Subsequently, this 
method has been developed into a frag-
mentation database known as G-DB1 
that will be accessible directly from the 
internet. The database can be directly 
linked to any of the freely available 
chemical databases such as PubChem, 
ChemSpider, KEGG and LipidMaps. A 
second approach has been to use the 
G-SIMS spectra as a bridge to informatics 
methods developed for MS/MS spectra 
of metabolites, called MetFrag. This works 
by searching PubChem, Chemspider and 
KEGG databases against the mass of the 
parent ion taking into account the addi-
tion or loss of hydrogen depending on 
the charge state. Candidate molecules 
are then fragmented, in a similar way 
to G-DB1, to the second level of frag-
mentation tree. Bonds in ring systems 
are treated specially. The algorithm takes 
into account neutral losses of H2O, HCN, 
NH3, CH2O and HCOOH from fragments. 
Bond dissociation energies are also 
calculated. The results for each candidate 
ion are then scored against the key peaks 
and intensities in the MS/MS spectrum. 
Initial tests have shown that this works 
very effectively for G-SIMS spectra of 
Irganox 1010, folic acid, caffeine, choles-
terol and phenylalanine. This method is 
promising but for efficient use requires 
the mass accuracy of SIMS instruments 
to improve7 from typical present accu-
racies of around 50 ppm to 5 ppm or 
better, which is typical for mass spec-
trometers used for organic analysis. This 
improvement is certainly possible and 
is already becoming available with new 
spectrometer designs.
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Conclusions
Secondary ion mass spectrometry has 
become a powerful analytical tech-
nique for the analysis of complex organ-
ics. However, the complexity of the 
mass spectra makes spectral interpre-
tation more difficult compared with, for 
example electrospray mass spectra, and 
consequently this has been a barrier to 
wider uptake. The “G” family of meth-
ods developed at NPL, with collabora-
tors, includes G-SIMS, G-tip, g-ogram 
and G-DB1 that give methods for spec-
trum simplification, G-SIMS imaging, 
separation of mixtures and linkage with 
informatics methods. Higher perfor-
mance mass spectrometer designs are 
now being developed which will allow 
improved integration with informatics 
methods and more effective identifica-
tion of substances. When combined with 

the amazing advances in 3D molecular 
imaging and recent improvements in 
spatial resolution to better than 50 nm, 
the future for SIMS is very exciting!
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