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Research groups around the world are 
studying the spatial location and distri-
bution of molecules within cells using 
an increasing number of analytical tech-
niques such as infrared (IR), Raman and 
X-ray fluorescence (XRF) spectroscopy. 
The information obtained from these 
techniques in terms of lipids, proteins 
and the general metabolome is comple-
mentary, but commonly the analysis of 
the data is performed individually on 
each technique. These three techniques 
are based on different interactions of the 
sample with light with different energy 
and wavelengths, leading to dissimilari-
ties in the spectral features offered by 
each technique. Table 1 summarises the 
main features of Raman and IR micro-
spectroscopy, both representing vibra-

tional spectroscopic methods. Raman 
spectroscopy is a scattering technique, 
in which energy is transmitted from 
a photon to a molecule, resulting in a 
shift in the wavelength of the incident 
light beam. Fourier transform (FT)-IR 
spectroscopy, on the other hand, is an 
absorbance technique where the mole-
cule absorbs a photon and gains energy 
moving from a lower to a higher vibra-
tional energy state. These methods are 
complementary in terms of providing 
molecular information on samples, as 
molecules or functional groups that tend 
to be strong Raman scatters are usually 
weak IR absorbers and vice versa. The 
techniques also complement each other 
in terms of their advantages and disad-
vantages for the investigation of biolog-

ical systems. FT-IR spectroscopy is a 
non-destructive method with a good 
signal-to-noise (S/N) ratio and a high 
efficiency. Raman may lead to a ther-
mal destruction of a cell or tissue due to 
the high output power of the light source 
and has a considerably lower S/N ratio, 
unless the energy of the incident light 
is close to an electronic transition of the 
analyte. In that case, resonance Raman 
enhances the S/N by several orders of 
magnitude. Surface enhanced Raman 
spectroscopy (SERS) can also be used 
for increasing the S/N ratio of Raman 
spectroscopy. However, as the light 
source in Raman is a typically a laser with 
wavelength ranging from the ultraviolet 
to near IR (240–1064 nm), the achiev-
able spatial resolution is higher depend-

Feature Raman Infrared

Origin Scattering of light: molecular vibrations with 
changes in the polarisability tensor of a func-
tional group or a molecule

Absorbance of light: molecular vibrations with 
changes in the dipole moment

Information Symmetric molecules 
Non-polar oscillating nuclei

Asymmetric molecules or fucntional groups 
Polar molecules

Efficiency Low High

S/N ratio Low (unless resonance or SERS is used) High

Spatial resolution ~0.2–0.7 µm (wavelength-dependent on the 
incident radiation)

2–10 µm (wavelength-dependent)

Living cells Good applicability (water is a weak Raman 
scatterer)

Possible (strong background contributions from 
water)

Destructiveness Thermal- and photo-denaturation possible Non-destructive

Table 1. Comparison of Raman and IR spectroscopy imaging techniques.
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ing on the wavelength of the incident 
photons. Furthermore, as water is a weak 
Raman scatterer, cells and tissues can be 
studied using Raman spectroscopy under 
physiological conditions.

While IR and Raman are very useful 
in establishing the chemical func-
tional groups of a sample, XRF enables 
compositional elemental analysis. XRF 
spectra are obtained by irradiating a 
sample with X-rays and recording the 
emitted fluorescence.1 The comple-
mentarity of the information obtained 
from the three techniques makes 
their combination extremely power-
ful in understanding both the molecu-
lar and atomic compositions. Biological 
samples, such as cells or tissues, are 
complex entities composed of a wide 
range of chemical compounds includ-
ing organic and inorganic molecules as 
well as monoatomic ions. Changes due 
to an external factor (e.g. inoculation of 
a drug, radiation or infection by a patho-
gen) affect the complex network of 
interactions between the metabolome, 
proteome and metallome. However, 

with a single technique only a portion of 
the molecular phenotype can be stud-
ied, thereby neglecting the contributions 
of the non-detectable analytes, which 
remain as “dark spots in the whole 
picture”. The biochemical interpreta-
tion of these changes is challenging if 
only individual sections of a phenotype 
provided by one instrument are anal-
ysed and studied independently. The 
integration of different modalities will 
enable a holistic comprehension of the 
biological system under study obtaining 
correlation between IR (polar/asymmet-
ric molecules), Raman (chromophoric/
symmetric molecules) and XRF (elemen-
tary composition). In addition, the use 
of hyperspectral images from different 
modalities enables spatial correlations 
based on molecular composition within 
cells and tissues. Figure 1 depicts the 
conceptual framework of a multimodal 
Raman and FT-IR hyperspectral image 
using a giant algal cell from the genus 
Mictrasteria as the model. In short, a 
cell or tissue is measured using FT-IR 
and then Raman with a similar spatial 

resolution per pixel. Alternatively, if the 
initial images contain different pixel 
sizes, pixels can be binned to match 
the lowest pixel resolution. In our case, 
IR images were registered to match 
the Raman image by rotating and/or 
cropping the image. Image process-
ing registration algorithms such as the 
ones available in the Image Processing 
ToolboxTM from Matlab (Mathworks) are 
very useful in this process. After registra-
tion, an augmented data matrix (X, Y, 
VIR + VRS) is obtained, with X and Y being 
the size of the image, and VIR and VRS 
the number of variables in the IR and 
Raman images, respectively. Then, the 
image can be treated in a similar way to 
a standard dataset by reshaping the 3D 
image into a 2D matrix (X × Y, VIR + VRS). 
In a previous study, we pioneered the 
use of multimodal vibrational (IR and 
Raman) imaging for the complete study 
of cells.2 In this article, we highlight the 
challenges and advantages on analys-
ing cells through multimodal imaging 
of cells and we provide two examples 
performed with algae.

Figure 1. Conceptual scheme of the multimodal imaging of a Micrasterias algae, depicting the registration of IR and Raman hyperspectral images for 
creating an extended data matrix.
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Data analysis and 
technical challenges
Two main challenges have to be consid-
ered for the creation and analysis of 
multimodal images. First, there are tech-
nical impediments on acquiring the 
images using different modes. Creating a 
hyperspectral multimodal image contain-
ing unique IR, Raman and/or XRF spectra 
requires i) exactly the same area of the 
sample to be measured with the differ-
ent techniques and ii) the use of the 
same pixel size, overcoming the dissim-
ilarities in special resolution by binning 
pixels or over- or under-sampling. The 
selection of substrates that enable the 
measurement of images through several 
platforms is a crucial aspect for obtaining 
successful results. Substrates should be 
compatible with the different techniques 
and not present any strong signals, which 
discards the use of low emissivity slides 
substrates and regular CaF2 windows for 
Raman. Alternatively, silicon wafers and 
Raman grade CaF2 windows are suit-
able substrates for performing Raman, 
reflection IR and transmission IR meas-
urements, respectively. In addition, it is 
important to consider a sequence of 
operations that will ensure that the non-
destructive techniques are performed 
first (e.g. perform FT-IR first). Another 
pitfall is finding the same cell or tissue 
section of interest under the microscope, 
which can be also troublesome under 
high magnification, and requires the use 
of flags such as marker points to locate 
the exact region. The same flags can be 
used for ensuring that cells are measured 
in the same spatial orientation, which 
facilitates the process of registering the 
images.

The second challenge to overcome is 
to data mine the combined images to 
extract meaningful biological informa-
tion. The lack of analytical data tools for 
integrating information obtained from 
different platforms makes the compre-
hension of complex biological systems a 
challenge. To analyse single hyperspec-
tral images is a complex issue per se, but 
when different modalities are integrated, 
the analysis should additionally deal 
with correlations between the variables 
from the different spectra. Advances in 
multimodal chemical imaging technolo-

gies and hyphenated analytical systems 
require new multivariate approaches 
to extract meaningful data and deter-
mine correlations in complex biological 
systems. Data fusion can be defined as 
the process of integrating data obtained 
from different sources. Data acquired 
from complementary sources can be 
jointly analysed for studying the rela-
tionship between variables obtained 
from different modalities. This enables 
a comprehensive understanding of the 
system, which can lead to an improved 
molecular phenotyping.3 Literature 
shows recent attempts at integrating 
data provided by different platforms: i) 
Statistical heterospectroscopy is used 
for the co-analysis of spectral datasets 
obtained from different spectroscopic 
platforms with multiple samples. The 
methodology performs a covariance map 
between the spectral dataset measured 
by the dif ferent techniques. This 
approach has already been employed for 
the correlation of NMR and IR spectra4 
and NMR and CE spectra. ii) Orthogonal 
partial least squares (O-PLS and O2-PLS) 
was used in the field of metabolomics 
and proteomics to integrate for example 
data from NMR and MS analytical plat-
forms. iii) Joint and Individual Variation 
Explained (JIVE) is a method that sepa-
rates the shared patterns among data 
sources (i.e. the joint structure) from the 
individual structure of each data source 
that is unrelated to the joint structure.5

Principal component 
analysis (PCA) of a 
hyperspectral image of a 
whole algae
Figure 2 depicts the PCA of a hyperspec-
tral multimodal image combining IR and 
Raman spectroscopies. The dataset was 
created using the procedure explained 
in Figure 1. Raman and IR hyperspec-
tral images were registered and a PCA 
was performed over the extended data-
set using second derivative and mean 
centring as the pre-processing steps. 
Prior to the data fusion, the spectra of 
the two images were normalised inde-
pendently using standard normal variate 
normalisation to eliminate dissimilarities 
between the ranges of Raman intensity 
(1–1000 counts) and IR absorbance 

(0–1 AU) values. Figure 2a shows a 3D 
image corresponding to the PC1 scores 
values for each pixel in the hyperspectral 
multimodal image. It can be seen that 
PC1 values are not distributed homoge-
neously along the cell; the centre and 
arms of the cell show low values whilst 
the edges of the cell show high values. 
This distribution evidences that the PC1 
captures variability related to differences 
between the spectra of the cellular wall 
and the rest of the cell. To gain insight 
into the changes in the spectra, which 
are caused by differences of the chemi-
cal composition of the cell, the loading 
vector of PC1 is investigated (see Figure 
2a and b). The PCA was performed over 
the second derivative of the data, so the 
loading was integrated twice for a better 
interpretation. It can be seen that some 
bands are strongly correlated (range 
1540–1142 cm–1) for both modalities, 
which indicates that they correspond to 
molecules that show absorbance in both 
Raman and IR. Other bands such as the 
ones assigned to C=O (1750 cm–1), and 
Amide I (1650 cm–1) show a strong nega-
tive value in the IR spectra, whilst the 
band assigned to Amide II (1540 cm–1) 
shows a small negative value in Raman 
and IR. This indicates that the proteins 
are concentrated in the regions with a 
negative value of the PC1 score, i.e. in 
the centre of the cell, and the edge of 
the cell is lower in proteins. Interestingly, 
the region between 1200 cm–1 and 
900 cm–1 presents a derivative shape, 
being highly positive between 1100 cm–1 
and 900 cm–1 and negative between 
1200 cm–1 and 1100 cm–1. In this region, 
several bands including the ones asso-
ciated with C–O and P–O stretching 
modes are present, making it difficult 
to assign them to lipids, phospholipids 
or carbohydrates. The composition of 
the edge of the cell, which shows posi-
tive PC1 values is related to the positive 
contribution of the 1100–900 cm–1 band, 
but the position of the band does not 
give enough information by itself to eluci-
date its origin. At this point, the multi-
modal approach can contribute to solve 
the vague assignment of the IR bands. In 
the 3050–2700 cm–1 region (see Figure 
2b), it can be seen that the Raman load-
ings vector shows a broad negative band 
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in the regions associated with the C–H 
stretching vibrational mode. The broad 
Raman band at this position is presum-
ably associated with the presence of 
lipids, which are highly symmetric mole-
cules with a large Raman cross-section. 
This indicates that lipids are concen-
trated inside the cells and not on the 
edges. The fact that the Raman band at 
2916 cm–1 is inversely correlated to the 
IR band at 1100–900 cm–1 eliminates 
the possible assignment of this band to 
lipids. That indicates that the IR bands 
located at 1100–900 cm–1 are caused 
by a high concentration of carbohydrates.

In summary, the use of multimodal 
imaging can be technically challenging 

and requires the use of complex data 
analysis procedures for resolving the 
sophisticated relationships between the 
different variables. However, it provides 
a comprehensive picture of the biological 
system under study.
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