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Introduction
The need to develop and deploy increas-
ingly effective, fast and robust sensing 
techniques capable of detecting, charac-
terising and sorting solid waste products 
and materials represents one of the most 
challenging aspects in the industrial recy-
cling sector. Most waste is of low value, 
so innovative technologies must be cost-
effective and, at the same time, achieve 
high performance in terms of materi-
als identification, both for sorting and 
quality control in recycling plants, so as 
to end up with high-quality secondary 
raw materials that are competitive in the 
market with the corresponding primary 
raw materials. In this perspective, the use 
of hyperspectral imaging (HSI) technol-
ogy to carry out products/materials char-
acterisation, through fast and reliable 
handling/processing, is becoming more 
and more important. In this article, some 
HSI-based applications in the waste recy-
cling sector, originally developed by the 
authors, are presented and discussed. 
All the procedures have been designed, 
implemented and set up with the aim of 
providing sensing/inspection tools able 
to perform non-invasive, contactless and 
real-time analyses at both laboratory 
and/or industrial scale.

Hyperspectral imaging
Hyperspectral imaging is an innovative 
technique that combines the properties 
of digital imaging with those of spectros-
copy.1 Using this approach, it is possible 
to detect the spectral signature of each 
pixel of the acquired image in different 
wavelength regions (visible, near infrared, 
short-wave infrared etc.) according to the 
characteristics of the selected sensing 
device. A hyperspectral image can thus 

be considered as a three-dimensional 
dataset with two spatial dimensions and 
one spectral dimension, the so-called 
“hypercube”. HSI can be considered 
one of the best and most powerful non-
destructive technologies for accurate and 
detailed information extraction from the 
acquired images, with a high level of flex-
ibility.

The large amount of spectral informa-
tion collected by HSI from the sample 
surfaces must be processed in order 
to extract the information of interest. 
Furthermore, as a preliminary step in 
any inspection or quality control logic 
development, hyperspectral libraries 
of reference spectra, to be utilised for 
unknown sample recognition, must be 
built. To reach the previously mentioned 
goals, algorithms and procedures for 
spectral data pre-processing, explo-
ration and classification are usually 
implemented through chemometric 
strategies. Different pre-preprocessing 
algorithms can be applied to hyper-
spectral data, finalised to linearise rela-
tionships among variables and remove 
external sources of variation that are 
not of particular interest for the analysis. 
Principal Component Analysis (PCA) is 
applied for exploratory purposes, provid-
ing an overview of the complex multi-
variate data.2 PCA decomposes spectral 
data into several principal components 
(PCs), linear combinations of the origi-
nal data, embedding the spectral varia-
tions of each collected spectral data set. 
The first few PCs, resulting from PCA, are 
used to analyse the common features 
among samples: in fact, samples char-
acterised by similar spectral signatures 
tend to aggregate in the score plot as 
a cluster.

Finally, the recognition of different 
products and/or materials is obtained 
utilising classification methods, such 
as Partial Least-Squares Discriminant 
Analysis (PLS-DA). PLS-DA is a super-
vised classification technique requir-
ing prior knowledge of the data and 
allowing the classification of samples 
into predefined groups.3 In order to do 
that, starting from reference samples, a 
discriminant function is built and then 
this is later applied to classify samples 
belonging to an unknown set. Once the 
model is built, it can be applied to vali-
dation images. An interesting and power-
ful classification method is hierarchical 
modelling. Adopting this kind of classi-
fication logic,4 objects are divided into 
subsets and then they are split again 
into further subsets, until each of them 
contains only a single object. During 
each step, objects that are different from 
the others are selected, isolated and 
compared through successive PLS-DA 
classification models.

Applications to the solid 
waste recycling sector
The utilisation of expensive and/or 
sophisticated devices is not appropriate 
in the waste recycling sector for several 
reasons. These are mainly technical (e.g. 
particles of different size, shape, compo-
sition, physical status), environmental 
(e.g. harsh conditions) and economic 
(e.g. low values of recovered materi-
als or products). Therefore, efficient, but 
low-cost, technologies for the characteri-
sation, sorting and quality control of the 
waste and recycled products are needed. 
A solution is represented by the appli-
cation of procedures based on the utili-
sation of HSI devices. These procedures 
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are growing rapidly in the waste manage-
ment sector for materials coming from 
different sources, i.e. Construction 
and Demolition Waste (CDW), Waste 
from Electric and Electronic Equipment 
(WEEE), Municipal Solid Waste (MSW) 
and End-of-Life Vehicles (ELV). Below, 
two different case studies related to the 
solid waste recycling sector are reported; 
the first one deals with end-of-life 
concrete and the second one with mixed 
plastic waste.

HSI sensing devices
Two different HSI-based sensing archi-
tectures have been utilised, both located 
at the Raw Materials Laboratory of the 
Department of Chemical Engineering, 
Materials & Environment (Sapienza - 
University of Rome).

The first HSI device works in the NIR 
range (1000-1700 nm) and consists 
of a Spectral Camera NIR (SPECIM Ltd, 
Finland) using an ImSpector™ N17E 
with a spectral sampling/pixel of 2.6 nm, 
coupled with a TE-cooled InGaAs photo-
diode array sensor (320 × 240 pixels) 
and a pixel resolution of 12 bits. The 
device is fully controlled by a PC unit. 
Objects/materials to be investigated are 
laid on a moving conveyor belt (width = 
26 cm and length = 160 cm) with adjust-
able speed (variable between 0 mm s–1 
and 50 mm s–1). Spectra acquisition can 
be carried out continuously or at specific 
time intervals. The lighting source uses a 
diffused light cylinder architecture, opti-
mised for the NIR (i.e. hosting cylinder 
aluminium internal coated), embedding 
five halogen lamps.

The second HSI device works in the 
SWIR range (1000–2500 nm) and is 
made up of a SISUChema XL™ Chemical 
Imaging Workstation (Specim, Finland), 
with an ImSpector™ N25E imaging spec-
trograph, having a spectral sampling/
pixel of 6.3 nm [active pixel 320 (spatial) 
× 240 (spectral) pixels], coupled with 
a MCT camera with pixel resolution of 
14 bits. The device is controlled by a PC 
unit equipped with the ChemaDAQ™ 
data acquisition software (Specim, 
Finland). Objects/materials to investigate 
are placed into a moving sample tray/s.

In both cases the acquired hyperspec-
tral images were processed using the 

PLS_Toolbox (Eigenvector Research, Inc.) 
running inside Matlab® (The Mathworks, 
Inc.).

End-of-life concrete
The possibility to utilise efficient and 
reliable sensing technologies able to 
perform detection/control actions, in 
order to assess concrete physical–chem-
ical characteristics before demolition 
and during the recycling process of the 
different constituents, represents a key 
issue for the demolition waste sector.5–7 
Particular attention has been devoted in 
recent years to the recycling of concrete 
aggregates, contributing to reducing non-
renewable natural resources exploitation. 
Characterisation of the aggregates during 
each step of the end-of-life concrete 
recycling process is important in order 
to obtain a final product able to satisfy 
market and regulatory requirements, with 
technical properties comparable with 
those of primary raw materials. In more 
detail, in order to recycle aggregates 
from concrete, two important aspects 

that can affect quality must be taken 
into account: 1) the presence of materi-
als considered as pollutants (i.e. plastic, 
foam, brick, wood, gypsum) with respect 
to the aggregates5 and 2) the degree of 
removal of mortar paste from the surface 
of recycled concrete aggregates.6

HSI was successfully used to recognise 
and identify the pollutants in a recycled 
aggregates stream as well as to evaluate 
the degree of removal of mortar paste 
from aggregates’ surfaces. For contami-
nant detection, the investigated materi-
als are characterised by different spectral 
signatures in the NIR range (1000–
1700 nm) (Figure 1a). PCA shows the 
variance differences between the anal-
ysed classes of the materials. In fact, as 
shown in the score plot (Figure 1b), it 
is possible to observe the presence of 
six different clusters, based on the group-
ing of pixels according to their spectral 
similarity, corresponding to the differ-
ent materials. After exploring the data by 
PCA, PLS-DA was applied as the classifi-
cation method (Figure 1c). The six-class 

recycling process of the different constituents, represents a key issue for the demolition waste sector.5‒7 
Particular attention is devoted in the last years to the recycling of concrete aggregates, contributing to 
reduce the non‐renewable natural resources exploitation. The characterisation of the aggregates during 
each step of the end‐of‐life concrete recycling process is important in order to obtain a final product able to 
satisfy market and regulations requirements, with technical properties comparable with those of primary 
raw materials. More in detail, in order to recycle aggregates from concrete, two important aspects that can 
affect their quality must be taken into account: 1) the presence of materials considered as pollutants (i.e. 
plastic, foam, brick, wood, gypsum) with respect to the aggregates5 and 2) the degree of liberation from 
mortar paste attached to the surface of recycled concrete aggregates.6 

 

  
a b 

  
c d 

 
e f 

Figure 1. a: Average reflectance spectra of the different materials identified inside the EOL concrete waste 
stream; b: PCA score plot; c: source digital image; and d: corresponding classified hyperspectral image. 
Plastic (A), brick (B), concrete aggregates (C), wood (D), gypsum (E) and foam (F); e: source digital image of 
recycled concrete aggregates; f: corresponding classified hyperspectral image (red: clean aggregate surface; 
blue: mortar). 

 

HSI was successfully utilised to recognise and identify the pollutants in a recycled aggregates stream as well 
as to evaluate the degree of liberation of aggregates surface from mortar paste. Concerning contaminant 

Figure 1. a: Average reflectance spectra of the different materials identified inside the EOL 
concrete waste stream; b: PCA score plot; c: source digital image; and d: corresponding classi-
fied hyperspectral image. Plastic (A), brick (B), concrete aggregates (C), wood (D), gypsum (E) 
and foam (F); e: source digital image of recycled concrete aggregates; f: corresponding classified 
hyperspectral image (red: clean aggregate surface; blue: mortar).
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model gives a good classification, as 
shown in Figure 1d. Furthermore, it was 
also possible to correctly identify the 
mortar attached to the aggregate surface, 
as shown in Figures 1e–1f. In fact, using 
a two-class PLS-DA model (i.e. mortar 
and aggregate classes), it was possible 
to identify clean aggregates, aggregates 
totally covered by mortar paste and 
aggregates partially-covered by mortar 
paste. The sensitivity and the specificity 
values of the model built for contami-
nants are reported in Table 1. Sensitivity 
measures the actual positive values 
identified as such, whereas specificity 
measures the negative values correctly 
identified. A perfect prediction model is 
characterised by values of sensitivity and 
specificity equal to 1.

Mixed plastic waste
Nowadays, there is an urgent need 
to recycle increasing amounts of plas-
tic waste, and to improve the recycling 
strategies currently adopted in this field 
in order to identify and sort the differ-
ent types of plastics into single poly-
mer streams, especially with reference to 
those most difficult to be separated by 
commonly used technologies. In order to 
produce high-quality plastic products for 
the market in secondary raw materials, it 
is in fact necessary to obtain mono-poly-
mer streams characterised by very low 
levels of contamination from other poly-
mers.8 Efforts must be made to achieve 
a high quality standard for plastic recy-
cling, both in terms of products fed to 
recycling plants and the final recovered 
product characteristics. The possibil-
ity of using HSI to implement analyti-
cal logics able to sort different polymers 

and/or to provide an accurate quality 
certification of products, can contrib-
ute to achieve this goal. Based on the 
experience developed by the Authors in 
hyperspectral imaging for the recognition 
of different plastic waste coming from 
different sources,8–14 a flexible hierarchi-
cal classification model based on PLS-DA 
has been developed and implemented 
to classify many classes of polymers at 
the same time. In more detail, HSI in 
the short-wave infrared range (1000–
2500 nm) was applied to identify eight 

different classes of polymers, represent-
ing the most used ones in many different 
applications and products (packaging, 
construction, electronic appliances, vehi-
cles etc.): HDPE, LDPE, PA, PET, POM, 
PP, PS and PVC. In Figure 2a, the aver-
age reflectance spectra of the analysed 
plastics are reported, showing differ-
ent characteristics useful for their further 
recognition. After exploring polymer 
spectral differences by PCA (Figure 2b), 
a hierarchical PLS-DA model was built, 
allowing the identification of the eight 
different polymer classes (Figures 2c 
and 2d). The proposed methodology, 
based on hierarchical classification, is 
very powerful and fast, allowing the eight 
different polymers to be identified in a 
single step.

The sensitivity and specificity values 
obtained for the built model are 
presented in Table 2. The values are 
very good, ranging from 0.953 to 1.000 
for both parameters. The proposed HSI 
approach has many advantages, being 
fast, non-destructive and accurate, 

Class

Sensitivity Specificity

Calibration Cross validation Calibration Cross validation

Aggregates 0.993 0.995 0.004 0.062

Brick 0.997 1.000 0.996 0.996

Gypsum 0.984 1.000 0.999 0.999

Plastic 1.000 1.000 1.000 1.000

Wood 0.982 0.983 0.994 0.825

Foam 1.000 1.000 1.000 1.000

Table 1. Sensitivity and specificity values for the six-classes PLS-DA built for the different concrete 
contaminants.
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Figure 2. a: Average reflectance spectra of the different classes of polymer waste samples; b: PCA score 
plot; c: source digital image of different plastic flakes; d: corresponding classified hyperspectral image.  

 

The sensitivity and specificity values obtained for the built model are presented in Table 2. The values are 
very good, ranging from 0.953 to 1.000 for both parameters. The proposed HSI approach has many 
advantages, being fast, non‐destructive and accurate, without any need to perform specific sample 
preparation. 

Table 2. Sensitivity and specificity for the eight‐classes hierarchical PLS‐DA built for the different plastic 
samples. 

Class 

Sensitivity  Specificity 

Calibration  Cross 
Validation  Calibration  Cross 

Validation 

LDPE  0.993  0.993  0.998  0.998 

PA  1.000  1.000  0.953  0.953 

HDPE 
LDPE PP 

POM 
PVC 

PS 

   PET 

PA 

Figure 2. a: Average reflectance spectra of the different classes of polymer waste samples; b: 
PCA score plot; c: source digital image of different plastic flakes; d: corresponding classified hyper-
spectral image. 
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without any need to perform specific 
sample preparation.

Conclusions
HSI can be profitably applied in the 
waste recycling sector to develop inno-
vative analytical procedures (laboratory 
scale) and sorting or quality control 
strategies (industrial scale) specifically 
targetted to solve classification/identi-
fication problems related to the detec-
tion of different materials and related 
characteristics, unwanted contaminants 
etc., sometimes difficult to “qualify” and 
“quantify” through conventional strate-
gies. The use of HSI and the develop-
ment of procedures for extraction of 
useful information based on chemo-
metric strategies were successfully 
applied to two different complex waste 
streams, i.e. end-of-life concrete and 
mixed plastic waste. The characteris-
tics of the devices and the potential 
offered by chemometric tools, allow 
such an approach to be used to set-up 
innovative, flexible, reliable and low-
cost detection/control devices and 
strategies that can be easily integrated, 
both at laboratory and industrial level, 
as well as inside existing consolidated 
analytical path and/or processing plant 
layouts.
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