
films on reflecting solid substrates, inter-
phases in bilayers, adsorbed mono- 
and multilayers on polymer films can 
be analysed in vacuum, in different 
atmospheres or under liquids as well. 
Layers may be formed using spin- 
and dip-coating, grafting to or grafting 
from procedures, self-assembly and 
Langmuir–Blodgett techniques. Kinetics 
of layer formation, swelling and deswell-
ing and adsorption and desorption proc-
esses can all be studied in situ. Recent 
results have been reported for polyelec-
trolytes,2 thermo responsive hydrogels3 
and proteins.4,5 Only few applications 
are known for detailed spectroscopic 
ellipsometry studies, including electronic 
transitions of organic films.6 One reason 
might be that measurements have to be 
performed in the UV or vacuum ultra-
violet (VUV) range, since very few elec-
tronic transitions occur in the vis. On 
the other hand, ellipso metry in the IR 
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Introduction
Thin polymer layers on solid substrates 
are of high technological importance 
due to their increasing potential for 
applications in electronics, sensors, 
nanotechnology and biotechnology. 
Appropriate characterisation methods 
are necessary for the design and analy-
sis of devices made using such mate-
rials. This review article focuses upon 
presenting the many analytical possi-
bilities for quantitative evaluation of the 
optical constants and thickness of poly-
mer layers by combined application of 
spectroscopic ellipsometry (SE) in the 
visible (vis) and infrared (IR) spectral 
range. In general, ellipsometry1 is the 
method of choice for the correct deter-
mination of optical constants; it provides 
polarisation degree and phase as well 
as the amplitude information of the 
optical response. These quantities may 
be derived within one experiment and 
thereby optical simulations and quan-
titative interpretation are improved 
for many applications. For many poly-
mers, no characteristic absorption 
bands are observed in the vis spectral 
range. Therefore, extension of the spec-
tral range to the IR and ultraviolet (UV) 
regions is desirable because character-
istic vibrational or electronic absorptions 
are available within these ranges (Figure 
1). However, it must be considered that 
many polymers might be degraded by 
intense UV irradiation.

Vis el l ipsometr y is a standard 
method for determination of the optical 
constants, roughness and film thickness.1 
Bare polymer surfaces, single polymer 

spectral range has become established 
over recent years because of the large 
amount of valuable information that can 
be derived from the analysis of charac-
teristic vibrational bands. As with vis 
ellipsometry, optical constants7–9 and 
structural properties of thin films and 
layered systems can reliably be derived 
using IR ellipsometric measurements by 
strict correlation with optical theory. The 
extensive analytical potential of IR ellip-
sometry is based on: 

a contactless and non-invasive meas-
urement,
monolayer sensitivity,
identification of chemical bonds of 
the film and interface by characteristic 
vibrational absorption bands, and
optical modelling with respect to 
molecular orientations, composition, 
miscibility, inter-diffusion and interac-
tions at interfaces, single films and in 
multilayers.

■

■

■

■
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Figure 1. Spectral range for ellipsometry and typical ranges for vibrational and electronic excita-
tions.
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Ellipsometric method
Upon reflection at a plane surface, 
linearly polarised radiation generally 
becomes elliptically polarised (Figure 2). 
The measured ellipsometric parameters, 
tanΨ (relative amplitude ratio) and Δ 
(relative phase shift) are related to the 
complex reflection coefficients rp and rs, 
which correspond to the p- and s-polar-
ised electric field components, respec-
tively. They are complex functions of the 
angle of incidence Φ0, the wavelength 
λ, the optical constants of the substrate 
(Ns), the ambient medium (n0) and the 
layers (nj, kj), and of the layer thicknesses 
(dj):

tan ( , , , , , , )Ψ ΦΔ× = =e i p

s
s j j j

r

r
F N n n k d0 0λ

j = 0, 1, 2… (number of layers)

N = n + ik (N: complex refractive index; 
n: refractive index; i: imaginary unit; k: 
absorption index). The optical constants 
can also be expressed as the complex 
dielectric function ε, with ε = ε1 + iε2 and 
N = ε1⁄2. The fit of the parameters of an 
optical model to the measured values 
of tanΨ and Δ provides the layer thick-
ness and optical constants of layered 
substrates. Strictly speaking, the funda-
mental equations of ellipsometry are only 
valid for systems consisting of homoge-
neous phases with smooth and parallel 

interfaces. Nevertheless surface rough-
ness, graded or heterogeneous compo-
sition and anisotropy can be modelled in 
some cases.

Va r i ab le  Ang le  Spec t roscop i c 
Ellipsometry (VASE) in the visible spec-
tral range (420–763 nm) was carried out 
using a rotating analyser type 44-wave-
length ellipsometer M-44 (J.A. Woollam 
Co., Inc., Lincoln, NE, USA); details can be 
found in Reference 4. The mid-infrared 
ellipsometer (2.5–25 μm) was attached 
externally to a Bruker Fourier Transform 
interferometer (Bruker Optics, Ettlingen, 
Germany). Details about the measure-
ment and IR ellipsometry set-up are 
described elsewhere.10

Isotropic films
Thickness d and refractive index n of 
single films of poly(vinyl chloride) (PVC) 
and poly(n-butyl methacrylate) (PnBMA) 
(Figure 3) on gold were determined by 
fitting the measured vis ellipsometric Δ 
and tanΨ spectra using a two-param-
eter Cauchy function for n: n(λ) = An + 
Bn/λ2, with k = 0. For interpretation, the 
experimental spectra were simulated in 
an optical single layer model. Note, that 
only for an isotropic sample can the opti-
cal constants be determined directly 
from the measured ellipsometric spec-
tra provided that the surface contribu-

tion may be negelected.11 The frequency 
independent part (An) was taken as 
the high frequency refractive index in 
the simulation of the infrared ellip-
sometry results [n∞ = 1.483 (PnBMA) 
and n∞ = 1.546 (PVC)]. For simula-
tions of IR spectra, vibrational bands 
are often included as harmonic oscilla-
tors.9 Typical results for the determined 
optical constants of isotropic PnBMA 
and PVC films are shown in Figure 3. 
Because no electronic absorption exists 
in the vis spectral range (800–400 nm) 
the determined dispersion curves of opti-
cal constants are “flat” and not structured. 
In contrast, the presented IR spectral 
range (4000–18,000 nm; 2500 cm–1 to 
556 cm–1) shows a high spectral contrast 
due to bands of characteristic vibrational 
absorptions.

Such optical constants can now also 
be used for forward calculation of more 
complex systems, as, for example, a 
PnBMA/PVC double layer (Figure 2). 
Then important properties, such as the 
composition, miscibility, interdiffusion 
and interactions at interfaces and in thin 
films can be evaluated.7,12–14 However, 
the optical constants of a mixed phase 
might be different to those of a simple 
mixture of optical constants of the pure 
materials. In particular for PnBMA/PVC, a 
manifestation of hydrogen-bonding-type 
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Figure 2. Principle of ellipsometry is shown on the left side. On the right: a typical optical model as used for evaluation of ellipsometric spectra of a 
polymeric double layer is presented. Optical constants of single compounds such as, for example, PVC and PnBMA, are determined by best-fit simula-
tions in an isotropic single layer model of ellipsometric spectra from films of the respective polymer.



ness of the mixed phase at intermedi-
ate steps of mixing was determined 
from optical simulations in a multilayer 
model.15

Anisotropic films
Anisotropic optical constants of a spin-
coated aromatic polyimide [poly(biphenyl 
dianhydride-p-phenylenediamine)] 
(PI2611-DuPont) were determined by 
a best fit of the ellipsometric spectra 
of a 1.81 μm thick film on silicon. n∞xy 
(n∞z) was chosen to be at 1.76 (1.56) 
in the IR, whereas a higher value of 1.92 
(1.69) was found at λ = 500 nm. In both 
cases an anisotropy Δn of about 0.2 
was obtained. Details about the simula-
tions of the vis ellipsometric spectra can 
be found in Reference 16; determination 
of a complete set of anisotropic optical 
constants of a polymer film has been 
performed and are given in Reference 9. 
The uniaxial IR optical constants of the 
polyimide film were deduced from a 
cooperative study using IR-SE, reflection 
absorption infrared spectroscopy (RAIRS) 
and IR transmission spectroscopy, which 
were measured in the same optical set-
up. The determined refractive index n 
and the absorption index k, parallel (x, 
y) and perpendicular (z) to the sample’s 
surface plane are presented in Figure 4. 
The observed anisotropy can be inter-
preted by a preferential molecular orienta-
tion of the aromatic imide segments lying 
almost parallel to the surface plane.

Conclusion
In conclusion, the combined applica-
tion of IR and vis ellipsometry has been 
demonstrated to be a powerful tool for 
quantitative analysis of thin isotropic and 
anisotropic polymer layers. The deter-
mined optical constants of the single 
materials are important quantities for 
the quantitative interpretation of optical 
spectra and can, moreover, be used as 
input for interpretation of spectra of thin 
films (from μm down to a few nm thick-
ness)12–14 and measurements taken by 
other techniques.8
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